Курсовая работа: Решение дифференциального уравнения первого порядка
Из полученных формул исключим члены, содержащие и .
Для этого вторую формулу умножим на , а третью – на и сложим с первой. Будем иметь:
Таким образом, с точностью до имеем приближённую формулу
(3)
Можно показать, что остаточный член формулы (3) равен где Аналогично имеем:
и
Отсюда
С другой стороны
Поэтому
Таким образом, с точностью до h5 имеем приближённую формулу
(4)
Можно доказать, что остаточный член формулы (4) есть
где
К формулам (3) и (4) присоединим выражения для производных:
(5)
(6)
Процесс численного дифференцирования уравнения (1) при наличии начального условия (2), использющий формулы (3) и (4), происходит следующим образом. Каким-либо методом вычисляем три начальные строки (начальная таблица):
Из формулы (4) при i=2 получаем первое приближение для :
(7)