Курсовая работа: Решение дифференциального уравнения первого порядка

и .

Второе приближение для определяем при i=2 из формулы (3):

(8)

После этого исправляем значения производных и , подсчитывая их вторые приближения:

и .

Для контроля ещё раз вычисляем по формуле (3) третье приближение значения , используя найденные значения и .

Если шаг h выбран подходящим, то перещёт не даёт нового результата, и в этом случае можно положить

В противном случае следует уменьшить шаг. Аналогично находятся дальнейшие значения при i>3.

Для получения начальных значений и обычно используют метод последовательных приближений или метод Рунге-Кутта, после чего нужные производные и (i=0,1,2) определяются по формулам (5) и (6).

Можна также применить следующий приём: сначала, используя данное начальное значение , непосредственно вычисляем

и .

Тем самым будет заполнена первая строка начальной таблицы .

Далее на основании формулы Тейлера приближённо получаем

и, следовательно, можно будит найти

и .

Пользуясь этими данными, уточняем значение по формуле (3):

и затем перевычисляем значения и . Тем самым заполняем вторую строку начальной таблицы. Аналогично, исходя из второй строки, находим элементы , и последней, третей строки начальной таблицы.

Отметим, что если пересчёты элементов строк дают значительные расхождения, то этот приём не является надёжным. В таком случае следует или уменьшить шаг h вычислений, или же обратиться к более точным методам.

В заключение приведём формулы, обеспечивающие более высокую степень точности, но требующие вычисления, кроме второй, ещё и третьей производной искомого решения. А именно, используя Формулу Тейлера и употребляя приём, аналогичный указанному выше, получаем формулы

, (11)

где

, и

, (12)

где .


Формула (11) употребляется для нахождения первого приближения ; формула (12) даёт уточнённое значение . Само собой разумеется, что к последним двум формулам целесообразно прибегать тогда, когда форма дифференциального уравнения позволяет сравнительно просто находить вторую и третью производные от искомой функции y.


Приложение

program proizw_w_p;

К-во Просмотров: 470
Бесплатно скачать Курсовая работа: Решение дифференциального уравнения первого порядка