Курсовая работа: Решение прикладных задач численными методами
ЦЕЛЬ РАБОТЫ:
Получение практических навыков по применению численных методов при решении прикладных задач на ЭВМ общего назначения, с использованием программ сложных циклических алгоритмов, включая редактирование программ в ЭВМ, отладку программ, выполнение расчетов на периферийные устройства.
Время: 12 часов.
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
Работа состоит из 2-х частей.
Цель первой части курсовой работы: получить практические навыки в использовании численных методов решения не линейных уравнений используемых в прикладных задачах.
Для выполнения 1 части работы необходимо:
· Составить программу и рассчитать значения функции в левой части нелинейного уравнения для решения задачи отделения корней;
· Составить логическую схему алгоритма, таблицу идентификаторов и программу нахождения корня уравнения методом дихотомии и методом, указанным в таблице;
· Ввести программу в компьютер, отладить, решить задачу с точностью ε=0,0001 и вывести результат;
· Предусмотреть в программе вывод на экран дисплея процессора получения корня.
Задание на выполнение первой части курсовой работы:
Вариант №21.
Уравнение: 0,25 x 3 + x -1,2502=0:
Отрезок, содержащий корень: [0;2].
I. Математическое описание численных методов решения
Метод деления отрезка пополам (метод дихотомии).
Этот метод позволяет отыскать корень уравнения с любой наперёд заданной точностью εε . искомый корень x уравнения уже отделен, т.е.указан отрезок [а, в] непрерывности функции f ( x ) такой, что на концах этого отрезка функция f(x) принимает различные значения:
f ( a )* f ( b )>0
В начале находится середина отрезка [ a, b ]:
и вычисляется значение функции в точке с, т.е. находится f ( c ). Если f ( c )=0, то мы точно нашли корень уравнения. Если же f ( c )≠0 ,то знак этой величины сравнивается со знаками функции y = f ( x ) в концах отрезка [ a, b ]. Из двух отрезков [ a, с], [ с, b ] для дальнейшего рассмотрения оставляется тот, в концах которого функция имеет разные знаки. С оставленным отрезком поступаем аналогичным образом. расчет прекращается, когда оставленный отрезок будет иметь длину меньше 2ε. В этом случае принимаем за приближенное значение корня середину оставленного отрезка и требуемая точность будет достигнута.
II. График функции.
Для выделения корней рассчитаем значения функции на заданном отрезке [0,2] с шагом 0,0001 и по полученным данным построим график функции.
Как видно из рисунка график пересекает ось Х один раз, следовательно, на данном отрезке [ 0, 2] наше уравнение имеет один корень.
Алгоритмы нахождения корней уравнения
I . C труктурная схема алгоритма: Метод дихотомии
| ||||||||||
да
| ||||||||||||||||||
|
| |||||||||||||||||
| ||||||||||||||||||
| ||||||||||||||||||
Листинг программы имеет вид
--> ЧИТАТЬ ПОЛНОСТЬЮ <--