Курсовая работа: Решение транспортных задач
Однородный груз сосредоточен у т поставщиков в объемах .
Данный груз необходимо доставить п потребителям в объемах .
Известны (i=1,2,…,m; j=1,2,…,n)- стоимости перевозки единицы груза от каждого i-го поставщика каждому j-му потребителю. Требуется составить такой план перевозок, при котором запасы всех поставщиков вывозятся полностью, запросы всех потребителей удовлетворяются полностью и суммарные затраты на перевозку всех грузов минимальны.
Исходные данные транспортной задачи записываются в таблице вида
Таблица 1
… | ||||
… | ||||
… | ||||
… | … | … | … | … |
… |
Переменными(неизвестными) транспортной задачи являются (i=1,…,m;i=1,2,…,n)- объемы перевозок от каждого i-го поставщика каждому j-му потребителю. Эти переменные могут быть записаны в матрице перевозок
Математическая модель транспортной задачи в общем случае имеет вид
(1.1)
i=1,2,…,m, (1.2)
j=1,2,…,n, (1.3)
i=1,2,…,m; j=1,2,…,n. (1.4)
Целевая функция задачи (1.1) выражает требования обеспечить минимум суммарных затрат на перевозку всех грузов. Первая группа из т уравнений (1.2) описывает тот факт, что запасы всех т поставщиков вывозятся полностью. Вторая группа из n уравнений (1.3) выражает требования полностью удовлетворить запросы всех n потребителей. Неравенства (1.4) являются условиями неотрицательности всех переменных задачи.
Таким образом, математическая формулировка транспортной задачи состоит в следующем: найти переменные задачи
i=1,2,…,m; j=1,2,…,n,
удовлетворяющее системе ограничений (1.2), (1.3), условиям неотрицательности (1.4) и обеспечивающее минимум целевой функции (1.1).
В рассмотренной модели транспортной задачи предполагается, что суммарные запасы поставщиков равны суммарным запросам потребителей, т.е.
.
Такая задача называется задачей с правильным балансом, а ее модель- закрытой. Если же это неравенство не выполняется, то задача называется задачей с неправильным балансом, а ее модель- открытой.
Для того чтобы транспортная задача линейного программирования имела решение, необходимо и достаточно, чтобы суммарные запасы поставщиков равнялись суммарным запросам потребителей, т.е. задача должна быть с правильным балансом.
Пример 1:
Составить математическую модель транспортной задачи перевоза груза из двух складов в 3 магазина:
Таблица 2
| 50 | 70 | 80 |
90 | 9 | 5 | 3 |
110 | 4 | 6 | 8 |
Решение. Введем переменные задачи(матрицу перевозок)
Запишем матрицу стоимостей
.
Целевая функция задачи равна сумме произведений всех соответствующих элементов матриц С и Х: