Курсовая работа: Решение транспортных задач

80

7

В оставшейся матрицы С наименьшей является стоимость , максимально возможная перевозка, которую можно осуществить от первого поставщика к четвертому потребителю, равна . В соответствующую летку таблицы записываем перевозку . Запасы первого поставщика исчерпаны, исключаем его из рассмотрения. В матрице С вычеркиваем первую строку. Запросы четвертого потребителя уменьшаем на 40

В оставшейся части матрицы С минимальная стоимость . Заполняем одну из двух клеток таблицы (2,4) или (3,2). Пусть в клетку (2,4) запишем . Запросы четвертого потребителя удовлетворены полностью, исключаем его из рассмотрения, вычеркиваем четвертый столбец в матрице С. Уменьшаем запасы второго поставщика

В оставшейся части матрицы С минимальная стоимость . Запишем в клетку таблицы (3,2) перевозку Исключаем из рассмотрения второго потребителя, а из матрицы С второй столбец. Вычисляем

В оставшейся части матрицы С наименьшая стоимость Запишем в клетку таблицы (3,3) перевозку Исключаем из рассмотрения третьего поставщика, а из матрицы С третью строку. Определяем .

В матрице С остался единственный элемент . Записываем в клетку таблицы (2,3) перевозку .

Проверяем правильность построения опорного решения. Число занятых клеток таблицы равно N=m+n-1=3+4-1=6. Применяя метод вычеркивания, проверяем линейную независимость векторов условий, соответствующих положительным координатам решения. Порядок вычеркивания показан на матрице Х:

1 2 5 6

Решение является «вычеркиваемым» и, следовательно, опорным.

Переход от опорного решения к другому. В транспортной задаче переход от оного опорного решения к другому осуществляется с помощью цикла. Для некоторой свободной клетки таблицы строится цикл, содержащий часть клеток, занятых опорным решением. По этому циклу перераспределяются объемы перевозок(осуществляется сдвиг по циклу). Перевозка «загружается» в выбранную свободную клетку и освобождается одна из занятых клеток, получается новое опорное решение.

Если таблица транспортной задачи содержит опорное решение, то для любой свободной клетки таблицы существует единственный цикл, содержащий эту клетку и часть клеток, занятых опорным решением.

Для удобства вычислений вершины циклов нумеруют и отмечают нечетные знаком «+», а четные знаком «-». Такой цикл называется означенным.

Сдвигом по циклу на величину называется увеличение объемов перевозок во всех нечетных клетках цикла, отмеченных знаком «+», и уменьшение объемов перевозок на ту же величину во всех не четных клетках, отмеченных знаком «-».

1.2.3 МЕТОД ПОТЕНЦИАЛОВ

Широко распространенным методом решения транспортных задач является метод потенциалов.

Если допустимое решение , i=1,2,…,m; j=1,2,…n транспортной задачи является оптимальным, то существуют потенциалы (числа) поставщиков i=1,2,…,m и потребителей j=1,2,…,n, удовлетворяющее следующим образом:

Группа равенств (2.1) используется как система уравнений для нахождения потенциалов. Данная система уравнений имеет m+n неизвестных i=1,2,…,m и j=1,2,…,n. Число уравнений системы, как и число отличных от нуля координат невырожденного опорного решения, равно m+n-1. Так как число неизвестных системы на единицу больше числа уравнений, то одной из них можно задать значение произвольно, а остальные найти из системы.

Группа неравенств (2.2) используется для проверки оптимальности опорного решения. Эти неравенства удобнее представить в следующем виде:

(2.3)

Числа называются оценками для свободных клеток таблицы (векторов условий) транспортной задачи.

Опорное решение является оптимальным, если для всех векторов условий (клеток таблицы) оценки неположительные.

Оценки для свободных клеток транспортной таблицы используются при улучшении опорного решения. Для этого находят клетку (l,k) таблицы, соответствующую . Если , то решение оптимальное. Если же , то для соответствующей клетки (l,k) строят цикл и улучшаю решение, перераспределяют груз

по этому циклу.

Алгоритм решения транспортных задач методом потенциалов:

1. Проверить выполнение необходимого и достаточного условия разрешимости задачи. Если задача имеет неправильный баланс, то вводится фиктивный поставщик или потребитель с недостающими запасами или запросами и нулевыми стоимостями перевозок.

2. Построить начальное опорное решение (методом минимальной стоимости или каким-либо другим методом), проверить правильность его построения по количеству занятых клеток (их должно быть m+n-1) и убедиться в линейной независимости векторов условий (используется метод вычеркивания).

К-во Просмотров: 796
Бесплатно скачать Курсовая работа: Решение транспортных задач