Курсовая работа: Розробка математичної програми в середовищі С++
, (17)
який збігається при
. (18)
Якщо в деякому околі кореня виконуються умови
, (19)
то метод релаксації збігаються при . Збіжність буде найкращою при
. (20)
При такому виборі t для похибки буде мати місце оцінка
, (21)
де .
Кількість ітерацій, які потрібно провести для знаходження розв’язку з точністю e визначається нерівністю
. (22)
Зауваження: якщо виконується умова , то ітераційний метод (17) потрібно записати у вигляді .
Метод Ньютона
Метод Ньютона застосовується до розв’язування задачі (1), де f(x) є неперервно-диференційованою функцією. На початку обчислень вибирається початкове наближення x0 . Наступні наближення обчислюються за формулою
. (23)
З геометричної точки зору xn+1 є значенням абсциси точки перетину дотичної до кривої y=f(x) в точці (xn , f(xn )) з віссю абсцис. Тому метод Ньютона називають також методом дотичних.
Теорема 2. Якщо не змінює знака на [a, b], то виходячи з початкового наближення , що задовольняє умові , можна обчислити методом Ньютона єдиний корінь рівняння (1) з будь-якою степінню точності.
Теорема 3. Нехай - простий дійсний корінь рівняння (1) і , де ,
, (24)
причому
. (25)
Тоді для метод Ньютона збігається, причому для похибки справедлива оцінка
. (26)
З оцінки (26) видно, що метод Ньютона має квадратичну збіжність, тобто похибка на (n+1) – й ітерації пропорційна квадрату похибки на n-й ітерації.
Модифікований метод Ньютона
(27)
дозволяє не обчислювати похідну на кожній ітерації, а отже і позбутися можливого ділення на нуль. Однак цей алгоритм має тільки лінійну збіжність.
Кількість ітерацій, які потрібно провести для знаходження розв’язку задачі (1) з точністю e задовольняє нерівності
. (28)