Курсовая работа: Синтез бензальанилина

Аммиак

1,8·10-5

Метиламин

4,5·10-4

Этиламин

5,1·10-4

Диэтиламин

10,0·10-4

Триэтиламин

5,6·10-4

Как видно из этого примера, замена атомов водорода на алкильные группы увеличивает основность азота. Это согласуется с электронно донорной природой алкильных групп, стабилизирующих сопряженную кислоту амина R3NH+ и тем самым повышающим его основность. Дополнительная стабилизация сопряженной кислоты амина происходит за счет эффекта сольватации молекулами растворителя. Триэтиламин обладает несколько меньшей основностью, чем диэтиламин. Полагают, что это вызвано уменьшением эффекта сольватации. Поскольку пространство вокруг атома азота занято алкильными группами, стабилизация на нем положительного заряда молекулами растворителя затруднена. В газовой фазе, где нет влияния молекул растворителя, триэтиламин обладает большей основностью, чем диэтиламин.


2.2.1. Химические свойства ароматических аминов

Ароматические амины имеют менее выраженный основный характер, чем алифатические. Так, Кb метиламина составляет 4,5·10-4, тогда как для анилина 3,8∙10-10. Уменьшение основности анилина по сравнению с алифатическими аминами объясняется взаимодействием неподеленной пары электронов азота с электронами ароматического ядра - их сопряжением. Сопряжение уменьшает способность неподеленной электронной пары присоединять протон.

Присутствие электроноакцепторных групп в ядре уменьшает основность. Например, константа основности для о-, м- и п-нитроанилинов составляет соответственно 1∙10-14, 4∙10-12 и 1∙10-12. Ведение второго ароматического ядра также заметно уменьшает основность (для дифениламина ~7,6∙10-14). Дифениламин образует сильно гидролизующиеся в растворах соли только с сильными кислотами. Трифениламин основными свойствами практически не обладает.

С другой стороны, введение алкильных групп (электронодонорные группы) увеличивает основность (Кb N-метиланилина и N,N-диметиланилина равны соответственно 7,1∙10-10 и 1,1∙10-9)

1. Алкилирование ароматических аминов

Ароматические амины способны замещать водород аминогруппы на алкилы. Эта реакция приводит к вторичным и третичным аминам:

C6H5NH2 + CH3I → C6H5-NH-CH3 + CH3I → C6H5-N(CH3)2

Алкилирование ведут спиртами или хлоралаканами, в качестве катализаторов используют соли одновалентной меди в виде аммиачных комплексов. Важно, что процесс алкилирования является последовательно-параллельным. Это обусловлено тем, что образовавшийся амин, в свою очередь, способен реагировать с алкилирующим агентом. Состав продуктов зависит от соотношения реагентов.

2. Ацилирование ароматических аминов

При действии ацилирующих агентов (кислоты, ангидриды, хлорангидриды) водородные атомы аминогруппы замещаются на ацильные остатки.

Ацильные производные не обладают основными свойствами. Они обладают устойчивостью к окислителям и потому используются в качестве промежуточных веществ в реакциях аминов в присутствии окислителей, например, нитрования.

3. Синтез азометинов (оснований Шиффа)

При слабом нагревании ароматических первичных аминов с ароматическими альдегидами легко образуются так называемые основания Шиффа или азометины:

Под действием разбавленных кислот основания Шиффа гидролизуются до альдегида и амина.

4. Реакции аминов с азотистой кислотой

К-во Просмотров: 376
Бесплатно скачать Курсовая работа: Синтез бензальанилина