Курсовая работа: Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов
Нуклеофильный реагент, предоставляющий пару электронов электронодефицитному атому углерода, способен подавать эту пару атому водорода и отщеплять его, превращаясь в кислоту, т.е. каждый нуклеофильный реагент является основанием. Нуклеофильная реакционная способность и основность изменяются параллельно у реагентов, в которых пара электронов находится на одном и том же атоме или неподеленная пара электронов находится у атомов элементов, принадлежащих одному периоду.
Реакционная способность нуклеофилов с атомами, находящимися в одной группе, зависит от положения элемента в этой группе: чем больше электроотрицательность атакующего атома, тем более реакционноспособен нуклеофил.
В протонных растворителях нуклеофильность аниона тем выше, чем больше размер иона.
Такой порядок изменения нуклеофильности в протонном растворителе объясняется тем, что анионы разного размера в протонном растворителе в различной степени сольватированы за счет образования водородных связей: анион малого размера с концентрированным зарядом сольватируется сильнее и стабилизирован в большей степени, чем анион большего размера, в котором отрицательный заряд распределен в большей степени.
Сила нуклеофила играет важную роль: например, неопентилбромид реагирует с этилат-ионом по SN 2-механизму, а с этиловым спиртом – по SN 1 -механизму. Сильный нуклеофил (сильное основание), этилат-ион, выталкивает ион галогена из молекулы, тогда как слабый нуклеофил, этиловый спирт, ждет, пока ион галогена отойдет.
Реакционная способность. При рассмотрении реакционной способности галогеналканов в реакциях нуклеофильного замещения следует изучать влияние двух факторов: пространственного (стерического) и электронного. В случае бимолекулярного нуклеофильного замещения наиболее важную роль играет стерический фактор. По мере увеличения числа и объема заместителей у атома углерода - реакционного центра возможность достижения активированного комплекса уменьшается. Это могут быть как алифатические, так и ароматические заместители или те и другие.
В SN 2-реакциях реакционная способность уменьшается в ряду:
СН3 –Х > R СН2 –Х > R 1 R 2 СН–Х > R 1 R 2 R 3 С–Х
2.1.2. Мономолекулярное нуклеофильное замещение
Третичные алкилгалогениды реагируют по механизму SN 1 (мономолекулярное нуклеофильное замещение).
Cтадии процесса. Реакция протекает в две стадии. Первая стадия - гетеролитический разрыв связи углерод-галоген - медленная.
Вторая стадия - образовавшийся карбокатион практически мгновенно взаимодействует с нуклеофилом – молекулой воды.
В отличие от механизма SN 2 разрыв связи С-Х и образование новой связи С-Nu протекает не одновременно, а последовательно.
Энергетическая диаграмма реакции изображает изменение потенциальной энергии в ходе двух стадийного мономолекулярного замещения.
Рис.2.4. График изменения потенциальной энергии в ходе мономолекулярного нуклеофильного замещения. SN 1-двухстадийный последовательный процесс.
Скорость реакции. В медленной стадии, определяющей скорость реакции, принимает участие только одна молекула, поэтому механизм называют мономолекулярным замещением. Скорость реакции зависит от концентрации галогеналкана и определяется по формуле V = K[R-Hal].
Концентрация нуклеофильного реагента. Низкая концентрация нуклеофила способствует SN 1-реакции.
Перегруппировка. В медленной стадии реакции образуется карбокатион - частица, способная к перегруппировке. Галогеналканы могут реагировать по механизму SN 1 через стадию перегруппировки первоначально образующегося карбокатиона: если в результате 1,2-сдвига отрицательно заряженной частицы образуется более устойчивый карбокатион, то происходит перегруппировка.
Перегруппировка считается признаком SN 1-механизма.
Растворитель. Переходное состояние SN 1-реакции более полярно, чем исходное состояние. Увеличение полярности растворителя способствует большей сольватации переходного состояния по сравнению с сольватацией исходного соединения. Это приводит к росту скорости реакции.