Курсовая работа: Система автоматики регулирования давления
Таблица 15
Параметры | Величина |
Питание – напряжение, В – частота, Гц |
220 50 |
Потребляемая мощность, ВА | 40 |
Активная мощность, кВт | 0,25 |
Число оборотов в минуту, об/мин | 1365 |
соsφ | 0,68 |
Номинальный вращающий момент на валу, Нм | 60 |
7. Описание принятой схемы контроля и регулирования системы
7.1 Контроль влажности воздуха в камере предварительного твердения
Для определения влажности воздуха в камере твердения применяют психрометр, который состоит из двух платиновых термометров «сухой» и «влажный» (поз. 1а). «Сухой» термометр находится в измерительной среде и измеряет температуру воздуха. «Влажный» Между этими термометрами возникает психрометрическая разность их показаний. Измерительная схема психрометра состоит из двух мостов, имеющих два общих плеча (поз. 1б). «Сухой» ТСП в одном плече моста, «влажный» в другом. С мостовой схемы сигнал поступает на КСМ2 (поз. 1в).
7.2 Контроль температуры в камере предварительного твердения
Для контроля температуры в этой зоне в качестве первичного преобразователя используется ТСМ – термометр сопротивления медный (поз. 2а), он преобразует тепловую энергию в электрическое сопротивление, которое подаётся на КСМ2 – компенсатор самопишущий с мостовой схемой (поз. 2б), на дисплее которого отображается значение температуры.
7.3 Контроль давления теплоносителя в паровой магистрали
Для контролирования давления в паровой магистрали в качестве первичного преобразователя используем датчик давления «Метран-100ДИ» (поз. 3а), который вырабатывает токовый сигнал и посылает его на вторичный прибор КСУ2 – компенсатор самопишущий с унифицированным выходным сигналом (поз. 3б). Компенсатор показывает значение давления.
7.4 Регулирование давления в паровой магистрали
Для контролирования давления в паровой магистрали качестве первичного преобразователя используем датчик давления «Метран-100ДИ» (поз. 4а), который вырабатывает токовый сигнал и посылает его на вторичный прибор КСУ2 – компенсатор самопишущий с унифицированным выходным сигналом (поз. 4б). Компенсатор показывает значение давления. Далее унифицированный сигнал поступает на регулятор «Ремиконт Р-130», который регулирует подачу пара на конвейер (поз. 4в).
Выбор автоматического или дистанционного (ручного) регулирования осуществляется ключом выбора режима типа ПВ1–10 (поз. 4д). Ручное управление осуществляется тумблером типа ТВ1–2 (поз. 4 е.). В случае неравенства регулируемой температуры с заданной, в регулирующем устройстве «Р-130» формируется сигнал рассогласования по пропорциональному (П) закону управления и подается на реверсивный пускатель.
Реверсивный пускатель типа ПБР-2 (поз. 4ж) включает исполнительный механизм типа МЭО-4/10–0,25 (поз. 4з) который приводит в действие регулирующий орган (заслонка) (поз. 4 и.), отвечающий за подачу пара. Положение регулирующего органа указывает дистанционный показатель положения ДУП (поз. 4г).
7.5 Контроль температуры в бассейне твердения
Для контроля температуры в бассейне твердения в качестве первичного преобразователя используется ТСМ – термометр сопротивления медный (поз. 5а), он преобразует тепловую энергию в электрическое сопротивление, которое подаётся на КСМ2 – компенсатор самопишущий с мостовой схемой (поз. 5б), на дисплее которого отображается значение температуры.
7.6 Контроль расхода теплоносителя (водный пар)
Для контроля расхода теплоносителя в качестве первичного преобразователя используем сужающее устройство ДК6-Ду (поз. 8а), с помощью которого образуется перепад давления. С помощью импульсных трубок перепад давления подается на дифманометр ДМ-3574 (поз. 8б), где происходит преобразование перепада давления в электрический сигнал. Сигнал поступает на вторичный прибор КСД2 – компенсатор самопишущий с дифференциально-трансформаторной схемой (поз. 8в), который регистрирует показания.
8. Техника безопасности и противопожарная техника в условиях эксплуатации системы
Техника безопасности включает организационные и технические мероприятия и средства, предотвращающие воздействие на работающих вредных производственных факторов.
8.1 Электробезопасность
При автоматизации конвейеров воздушного твердения возникает необходимость подключения электроустановок к электросети.
Предупреждение электротравм является важной задачей охраны труда, которая на производстве реализуется в виде системы организационных и технических мероприятий, обеспечивающих защиту людей от поражения электрическим током.
Опасность эксплуатации электроустановок определяется тем, что токоведущие проводники (или корпуса машин, оказавшиеся под напряжением в результате повреждения изоляции) не подают сигналов опасности, на которые реагирует человек. Реакция на электрический ток возникает после его прохождения через ткани человека.
Степень поражения человека зависит от рода и величины напряжения и тока, частоты электрического тока, пути тока через человека, продолжительности действия тока, условий внешней среды.
Как показывает практика, спасение человека возможно, если время, в течение которого человек находится под действием электрического тока, не превышает 4…5 минут.