Курсовая работа: Системы эквивалентные системам с известным типом точек покоя

, если с0;

x=0, y=at+c, если с=0, где постоянные с, с, с связаны соотношением с(b+c+c)=a, имеет два центра в точкахи .

Решение:

Подставим общее решение

в нашу систему (1) получим

==c(ccosct-csinct)=

a-

Для краткости распишем знаменатель и преобразуем


x+y+b=

=

=a+c(csinct+ccosct)

a-

Получаем, что x и y являются общим решением системы.

3. Нахождение первого интеграла дифференциальной системы и условия его существования

Рассмотрим систему = f (t, x), x= (x,…, x), (t, x)(1) с непрерывной в области D функцией f. Дифференцируемая функция U (t, x), заданная в некоторой подобласти G области D, называется первым интегралом системы (1) в области G, если для любого решения x(t), t, системы (1), график которого расположен в Gфункция U (t, x(t)), t, постоянна, т.е. U (t, x(t)) зависит только от выбора решения x(t) и не зависит от t.

Пусть V (t, x), V:GR , есть некоторая функция. Производной от функции V в силу системы (1) назовем функцию VVR, определяемую равенством

V (t, x(t))t.

Лемма 1.

Для любого решения x(t), t, системы (1), график которого расположен в G, имеет место тождество

Vt.

Без доказательства.

Лемма 2.

Дифференцируемая функция U (t, x), U:GR , представляет собой первый интеграл системы (1) тогда и только тогда, когда производная U в силу системы (1) тождественно в G обращается в нуль.

Необходимость. Пусть U (t, x) есть первый интеграл системы (1). Тогда для любого решения x(t) этой системы, применяя лемму 1 будем иметь тождества

U

Откуда при t=t получим равенство U(t справедливое при всех значениях t и x(t). Необходимость доказана.

К-во Просмотров: 220
Бесплатно скачать Курсовая работа: Системы эквивалентные системам с известным типом точек покоя