Курсовая работа: Системы эквивалентные системам с известным типом точек покоя
а с ним и достаточность.
Из определения первого интеграла следует, что постоянная на G функция также является первым интегралом системы (1). Первый интеграл U (t, x) будем называть на G, если при всех (t, x) выполняется неравенство.
Функцию U(x) будем называть стационарным первым интегралом системы (1), если она не зависит от t и является первым интегралом системы (1).
Найдем первый интеграл нашей системы:
Возведем в квадрат и выразим с
y
Положим , получим
Проверим, что функция – это первый интеграл системы (1), т.е. проверим выполнение тождества (2)
Найдем производные по t, x, y
После выше сделанных преобразований получаем, что функция – это первый интеграл системы (1),
2) Положим , т.е. ,
где , Q
3) Проверим выполнение тождества:
(3), где