Курсовая работа: Собственные значения.

{**********************************************************************}

Программа определение всех главных напряжении трехосной матрицы напряжений.

В программе использовано подпрограмма ЕIGЕМ из пакета программ для научных исследований фирмы IВМ

{**********************************************************************}

DIMENSION S<6),R(?) С

# Задание матрицы в компактной форме

S(1) = 10 Е06

S(2) = 5 Е06

S(3) = 20 Е06

S(4) = 6 Е06

S(5) = 4 Е06

S(6) = 30 Е06

# Определение всех собственных значений методом Якоби

CALL EIGEN(S,R,3,0)

# Печать собственные значении

WRITE(6,100)

WRITE(6,101) S(1),S(3),3(6)

100 FORMAT(1Х,'ТНЕ EIGENVALUES ARE'')

101 FORMAT(1X,E15.8)

STOP

END

Результат работы программы получаем в виде:

Собственные значения равны

0.33709179E 08

0.19149061E 08

0.71417603E 07

Метод Гивенса для симметричных матриц

Метод Гивенса основан на преобразовании подобия, аналогичном применяемому в методе Якоби. Однако в этом случае алгоритм построен таким образом, что вновь образованные нулевые элементы при всех последующих преобразованиях сохраняются. Поэтому метод Гивенса требует выполнения конечного числа преобразований и по сравнению с методом Якоби связан с меньшими затратами машинного времени. Его единственный недостаток состоит в том, что симметричная матрица приводится не к диагональному, а к трехдиагональному виду. Ниже будет показано, что такая форма матрицы может быть весьма полезной и оправдывает усилия, затраченные на ее получение.

В случае матрицы размерности п х п метод Гивенса требует п — 2 основных шагов, на каждом из которых выполняется ряд преобразований, число которых зависит от числа нулей, которое хотят получить в данном столбце или строке. На k -м шаге обращают в нули элементы, стоящие вне трех диагоналей k-й строки и k -го столбца, сохраняя в то же время нулевые элементы, полученные на предыдущих шагах. Таким образом, перед началом k -го шага преобразованная матрица является трехдиагональной, если ограничиться рассмотрением ее первых k — 1 строк и столбцов. По мере преобразований симметричная матрица размерности 5х5 приобретает следующие формы:

* * * * *
* * * * *
A0= * * * * * исходная матрица,
* * * * *
* * * * *
* * 0 0 0
* * * * *
A1= 0 * * * * после первого основного шага,
0 * * * * состоящего из трех преобразований,
0 * * * *
* * 0 0 0
* * * 0 0
A2= 0 * * * * после второго основного шага,
0 0 * * * состоящего из двух преобразований,
0 0 * * *
* * 0 0 0
* * * 0 0 после третьего основного шага,
A3= 0 * * * 0 состоящего из одного преобразования.
0 0 * * * Теперь матрица имеет трехдиагональный вид.
0 0 0 * *

На каждом основном шаге изменяются лишь те элементы матрицы аij, которые расположены в ее правой нижней (заштрихованной) части. Таким образом на k-м шаге преобразуется только матрица порядка (п — k + 1), занимающая правый нижний угол исходной матрицы. Ясно, что на каждой следующей стадии выполняется меньшее число преобразований, чем на предыдущей. Всего для приведения матрицы к трехдиагональному виду требуется выполнить (n2 — Зп + 2)/2 преобразований.

К-во Просмотров: 921
Бесплатно скачать Курсовая работа: Собственные значения.