Курсовая работа: Составление теоретической конструкции балки

σ 1,3 =0,5(σк±)=0,5(–130±),

σ1 = 2,2 МПа; σ3 = – 132,2 МПа – ориентация главных площадок


tgα1 = (σ1 – σк)/τk= (2,2 – ( –130))/17 = 7,78;

α1 = 82040′.

Экстремальные касательные напряжения равны по величине

τmax, min= ±0,5(σ1- σ3)= ±0,5(2,2 + 132,2) = ± 67,2 МПа

и действуют на площадках, равнонаклоненным к осям 1 и 3. Графическое определение главных напряжений и положения главных площадок.

2 Создание балки из конкретного металла с заданными характеристиками

2.1 Построение эпюр поперечной силы и изгибающего момента. Опорные реакции

Σmв=0, – RA·3a + 1,5qa2 + q·3a·2,5a – 3·qa·a = 0, RA = 2qa;

ΣYi=0, RA – q·3a + RB – 3qa =0, RB = 4qa.

Эпюра Qy.

Поперечная сила постоянна на участке ЕВ и ВС; изменяется по линейному закону на участке DA и AE и принимает следующие значения:

QD = 0, QAD = QD – qa = – qa,

QA = QAD + RA = – qa + 2qa = qa, QAE = QA – q·2a = qa – 2qa = – qa,

QEB = QAE = – qa, QB = QEB+ RB = – qa + 4qa = 3qa,

QB = QC = 3qa.

Эпюра Мх.

Изгибающий момент изменяется по линейному закону на участке EB и BC, по квадратичному закону на участках DA и AE, принимая экстремальные значения в сечении z = 4а. По значениям момента в характерных точках

MD = 0, MA = – qa·0,5a = – 0,5qa2 ,

M (2a) = – 2qa·a + RA·a = – 2qa2 + 2qa2 = 0,

ME = – 3qa·1,5a + RA·2a = – 4,5qa2 + 4qa2 = – 0,5qa2 ,

MEB = ME + 1,5qa2 = – 0,5qa2 + 1,5qa2 = qa2 ,

Mmax = MB = – 3qa·2,5a + RA·3a – 1,5qa2 = – 3 qa2,

MC = 0.


строим эпюру Мх, из которой находим расчетный изгибающий момент

Мрас= 3qa2 = 60,48 кН∙м

2.2 Определение перемещений

2.2.1 Метод начальных параметров

Из граничных условий имеем: vA = 0, vB = 0. Отсюда находим v0 , θ0:

vA= v(a) = v0 + θ 0∙а + ,

vB=v(4a)=v0+ θ0∙4а +;

θ 0 = – ;

v0 = – = 0; v0 = .

А теперь находим искомые перемещения:

- сечение z = а

θ (а) = θ0 + ;

V(а) = 0;

- сечение z = 2а

θ(2а) = θ0 + ;

v(2а) = v0+ θ0∙2a+;

- сечение z = 3а

θ(3а) = θ0 + = ;

v(3a) = v0 + θ0∙3a + ;

- сечение z = 4а

v(4a) = 0;

θ(4а)=θ0+ =;

- сечение z = 5а

θ(5а)=θ0+ = ;

V(5a)=V0+θ0∙5a+ .

Результаты вычислений сведем в таблице и построим упругую линию балки пунктиром

Перемещения

Сечение z

0

a

2a

3a

4a

5a

θ х(qa3/EIx)-1

– 7/9

–11/18

– 4/9

– 5/18

20/9

67/18

v х(qa4/EIx)-1

53/72

0

–35/72

– 8/9

0

29/9

Для расчета балки на жесткость необходимо знать максимальный прогиб, который имеет место в сечении, где угол поворота равен нулю. Он имеет место в сечении z = 3а, отсюда vmax= vВ = 8qa4/(9 EIx)

2.2.2.Энергетический метод

Строим эпюры моментов от заданной нагрузки и от единичных воздействий, приложенных к балке в направлении искомых перемещений. Определяем моменты посередине участков.

МсрDА = (МС + МА)/2 + qа2/8 = (0 + 1/2) qа2 + qа2/8 = 3/8 qа2,

МсрАM = (МA + МM)/2 + qа2/8 = (0 + 1/2) qа2 + qа2/8 = 3/8 qа2,

МсрME = (МM + МE)/2 + qа2/8 = (0 + 1/2) qа2 + qа2/8 = 3/8 qа2,

МсрEB =(МE + МB)/2 = (1 + 3) qа2/2 =1/2 qа2,

МсрBС =(МB + МC)/2 = (3 + 0) qа2/2 = 3/2qа2.

Перемножая соответствующие эпюры, находим искомые перемещения, увеличенные для удобства вычислений в EI раз:

EIxvB=;

ЕIxθA=;

ЕIxθB=.

2.2.2 Расчет на ЭВМ методом конечных элементов

Исходные данные вво- дятся в безразмерной форме:

ζ = z /a (0 ≤ ζ ≤ 10), , .

Из рисунка следует, что наибольший прогиб имеет место в сечении 3a, где возникает наибольший изгибающий момент, и равен

.


2.2.4 Подбор сечения неравнобоких уголков по условиям прочности и жесткости

К-во Просмотров: 243
Бесплатно скачать Курсовая работа: Составление теоретической конструкции балки