Курсовая работа: Составление теоретической конструкции балки
Условие прочности стержня АВ при принятых размерах поперечного сечения выполняется, так как
МПа.
Сечение В Стержень ВС
Он испытывает изгиб в двух плоскостях, кручение, сдвиг и сжатие. Пренебрегая продольной и поперечной силами, условие прочности можно записать в виде ,
где - эквивалентный момент по III гипотезе прочности, равный
.
Следовательно, ,
откуда мм.
Принимаем по ГОСТ 6636 do=190мм.
Сечение С Стержень СD
Он испытывает изгиб в двух плоскостях, т.е. косой изгиб. Так как Mx < My, то сечение следует расположить длинной стороной вдоль оси x. В этом случае будет выполняться условие Wx<Wy, т.е.большему изгибающему моменту будет соответствовать больший момент сопротивления
Так как h/b=2, то h = 2b;
, .
Условие прочности
.
Отсюда мм.
Принимаем по ГОСТу 6636 do=110мм. Искомое сечение стержня будет 11x18 см.
6 Определение размеров рам
Дано:
Значения коэффициента продольного изгиба φ, увеличенные в 1000 раз, приведены в таблице:
λ | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |
φ | 996 | 992 | 900 | 780 | 660 | 575 | 463 | 387 | 312 | 252 | 210 | 175 | 150 | 129 | 113 |
6.1 Определение геометрических характеристик сечения
- площадь ;
- минимальный момент инерции
Imin = ;
- минимальный радиус инерции
.
Полученные характеристики можно записать в общем виде следующим образом:
,
где ; d = а – характерный размер сечения.
6.2 Подбор поперечного сечения
Искомый характерный размер сечения находится из трансцендентного уравнения
,
которое решается методом последовательных приближений.
Первое приближение. Примем , тогда
Гибкость стержня равна .
По таблице , используя формулу линейной интерполяции
,
находим .
Ввиду большой разницы между φ1 и делаем второе приближение, принимая
Имеем: .
Расхождение , то есть подбор закончен. Следовательно, характерный размер сечения должен быть не менее . Принимаем по ГОСТ 6636: .
6.3 Определение коэффициента запаса устойчивости
Гибкость стержня при принятых размерах сечения равна
.