Курсовая работа: Статистический пакет STATISTIKA

4) Проверить значимость построенной модели (например, используя уровень значимости α=0,05 ).

5) Если модель значима дать оценку коэффициентов множественной регрессии на основе t -критерия, если tтабл (15-4-1)= tтабл (10)=2,2281 и уровня значимости α=0,05 .

6) Пересчитать уравнение множественной регрессии используя только значимые факторы.

7) Проверить адекватность регрессионной модели (полученной на предыдущем этапе анализа).

8) Осуществить прогнозирование в соответствии с вариантом

9) Оформить отчет о проделанной работе используя распечатки отчета, полученного средствами пакета STATISTICA или в MS Word.

Порядок выполнения задания

В системе STATISTICA для построения корреляционной матрицы можно воспользоваться модулем Basic Statistics/Tables (Основные статистики и таблицы), выбрав процедуры ®, используя в качестве переменных все исходные данные (Select all). И процедуру для представления матрицы в графическом виде.

По корреляционной матрице можно в первом приближении судить о тесноте связи факторных признаков х1 , х2 ,…,xm между собой и с результативным признаком y , а также осуществлять предварительный отбор факторов для включения их в уравнение регрессии. При этом не следует включать в модель факторы, слабо коррелирующие с результативным признаком и тесно связанные между собой. Не допускается включать в модель функционально связанные между собой факторные признаки, так как это приводит к неопределенности решения.

Выбор уравнения модели, в большинстве случаев, производятся среди функций перечисленных в таблице 3. В системе STATISTICA для построения линейного уравнения множественной регрессии можно воспользоваться модулем множественной регрессии , определив зависимую (dependent) переменную y и независимые (independent) переменные х1 , х2 , x3 , x4 .

Статистический вывод о пригодности (значимости) уравнения регрессии в системе Statistica обычно проверяется в следующей последовательности.

10.Проводится общаяпроверка модели, целью которой является выяснение, объясняют ли х -переменные значимую долю изменения у . Определение значимости модели рекомендуется проводить по следующим методам (см. табл. 5).


Таблица 5

Критерий Фишера

Использование уровня

значимости α

Использование коэффициента детерминации R2
Проверяется нулевая гипотеза H0 о равенстве полученных коэффициентов регрессии нулю: a0 =a1 =a2 =…=am =0 . Для этого рассчитанное системой Statistica значение F -критерия (Fрасч ), сравнивается с табличным значением Fтабл , определяемым с использованием специальных таблиц по заданным уровню значимости (например, a =0,05 ) и числу степеней свободы (df1=m, df2=n-m-1 ). Если выполняется неравенство Fрасч < Fтабл , то с уверенностью, например на 95 %, можно утверждать, что рассматриваемая зависимость y = а0 + a1 x1 + … +am xm является статистически значимой.

Если рассчитанное в Statistica значение уровня значимости р больше, чем заданный уровень значимости a (например, a =0,05) , то полученный результат нужно трактовать как незначимый

(для 95% вероятности). В том случае, когда величина р <0,05, то вывод такой: это значимое уравнение с вероятностью 95%.

Рассчитанная системой Statistica величина сравнивается с табличными (критическими) значениями , определяемым с использованием специальных таблиц по заданному уровню значимости (например, α =0,05 ). Если окажется, что >, то с упомянутой степенью вероятности (95 %) можно утверждать, что анализируемая регрессия является значимой.

Если регрессия неявляется значимой, то говорить больше не о чем.

В при веденном примере модель значима, т.к. вычисленный уровень значимости модели р =0,000000<0,05.



Осуществив переход к результатам регрессии (Summary: Regression results) получаем уравнение линейной множественной регрессии вида y(x1 , x2 , x3 , x4 )=6,9+0,07x1 –0,00035x2 –2,08x3 +0,00003x4 :



2. Если регрессия оказывается значимой, то существует взаимосвязь между параметром у и переменными х1 , х2 ,…,xm . Однако остается неясно, каково влияние конкретных факторов х1 , х2 ,…,xm на исследуемую функцию у . Можно продолжить анализ, используя t- тесты для отдельныхкоэффициентов регрессии а0 , a1 ,a2 ,…,am с целью выяснить, насколько значимой является влияние той или иной переменной х на параметр у при условии, что все другие факторы хk остаются неизменными. Проверку на адекватность коэффициентов регрессии рекомендуется проводить по следующим эквивалентным методам (см. табл. 5).

Таблица 5

Использование t-критерия Стьюдента

Использование

уровня значимости α

Анализируемый коэффициент а0 , a1 ,a2 ,…,am считается значимым, если рассчитанное системой Statistica для него значение t -критерия по абсолютной величине превышает tтабл , определяемым с использованием специальных таблиц по заданным уровню значимости (например, a =0,05 ) и числу степеней свободы (df=n-m-1 ). Коэффициент регрессии а0 , a1 ,a2 ,…,am признается значимым, если рассчитанное системой Statistica для него значение уровня значимости р меньше (или равно) 0,05 (для 95%-ной доверительной вероятности).

Т.к. вычисленные уровни значимости p-level для коэффициентов, стоящих при x2 и x4 меньше 0,05, то они не значимы. К аналогичному выводу можно прийти, воспользовавшись t -критерием: t2 (10)=-0,013<2,228 и t3 (10)=1,44<2,228.

С учетом этого факта, пересчитаем уравнение множественной регрессии, выбрав в качестве зависимой (dependent ) переменную y и независимые (independent ) переменные х1 и x3 , коэффициенты при которых значимы:


Получаем:

К-во Просмотров: 388
Бесплатно скачать Курсовая работа: Статистический пакет STATISTIKA