Курсовая работа: Статистическое исследование свойств псевдослучайных чисел получаемых методом Джона фон Неймана
При уровне значимости 0,1 критическое значение равняется 1,22.
По формуле подставляя это значение получим следовательно гипотеза о равномерном распределении случайных чисел полученных методом Неймана неотвергается .
Заключение
Установленный теоретический закон отличается незначительно от закона, полученного в результате эксперимента. Эти расхождения объясняются случайными обстоятельствами, связанными с ограниченным числом наблюдений.
Критерий Пирсона опровергает гипотезу о том, что псевдослучайные числа полученные методом Неймана не распределены по равномерному закону распределения с уровнем значимости α=0.25.
Критерий Колмогорова подтверждает гипотезу о равномерном распределении случайных чисел полученных методом Неймана с уровнем значимости α=0.1
Числовые характеристики близки к статистическим параметрам, характерных для равномерно распределенных чисел
Следовательно, случайные числа получаемые методом Неймана распределены равномерно на интервале (0,1).
Список литературы
1. Гмурман В. Е. - Теория вероятностей и математическая статистика.- М.: Высш. шк., 2003
2. Кремер Н. Ш. – Теория вероятностей и математическая статистика.- М.: Юнити, 2006
3. Крамер Г. – Математические методы статистики. – М.: Мир, 1975
4. Гнеденко Б. В. – Теория вероятностей и математическая статистика.- М.: Наука, 1970
5. Ветцель Е.С.; Овчаров Л.А. - Теория вероятностей. - М.:Наука,1986
6. Ермаков С.М.; Михайлов Г.А.- Статистическое моделирование. - М.: Наука, 1983