Курсовая работа: Стеклование и стеклообразное состояние

Если рассматривать деформацию стеклообразного полимера с точки зрения зависимости (1), то можно сделать вывод, что в точке стеклования энергетический барьер Uна пути перемещения сегмента столь велик, что процесс этот становится невозможным. Если под действием внешнего напряжения перемещения все-таки реализуются, что приводит к вынужденно - эластической деформа­ции, то это означает, что под действием деформирующей силы энергетический барьер стал меньше. Можно сказать, что энергия активации U является функцией напряжения. Ее можно выразить следующим образом: U= U0 -aσ. Теперь можно изменить выра­жение (1) и получить формулу Александрова—Гуревича:

τ=τ0eu - a σ / RT (2)

В формуле (2) зафиксирована зависимость времени релакса­ции от напряжения. Релаксационные процессы происходят не только под влиянием теплового движения, но и под влиянием действующей силы, т. е. тогда, когда сегмент накапливает суммар­ный запас тепловой и механической энергии, достаточный для преодоления энергетического барьера.

Рассматривая механизм вынужденно - эластической деформа­ции, следует учитывать, что влияние механических напряжений на время релаксации является решающим лишь в момент начала образования шейки, т. е. в начале роста микротрещин. Когда пе­ремещение сегментов в направлении деформирующего усилия становится значительным, развивается и значительное внутрен­нее трение. В области перехода образца в шейку (область суже­ния) выделяется тепло и температура повышается. Так, прямые измерения на примере полиамида показали рост температуры в области сужения на 30 ºС. Очевидно, что сам распад кристаллитов в полиамиде требовал бы, наоборот, затраты тепла, т. е. тепловой эффект обусловлен внутренним трением при вынужденно - элас­тической деформации. Аналогичное повышение температуры отмечено и при деформации, по существу, аморфного поливинилхлорида.

Конечно, в стеклообразном состоянии вклад механической энергии является решающим; как следует из изложенного, в его отсутствие релаксационные процессы вообще не происходят.

Это позволяет применять стеклообразные полимеры в качестве конструкционных материалов, изготовляя из них детали, работа­ющие в условиях заданных деформаций или напряжений. Если стеклообразный полимер деформирован на определенную величину, меньшую, чем деформация, соответствующая пределу вынужденной эластичности, то и напряжение при этом меньше, чем σт .Релаксация напряжения при малой деформации незначи­тельна, и напряжение, возникшее при заданной деформации, со­храняется. Образец (изделие) сохраняет размеры и формы под на­грузкой. Это отличает стеклообразные полимеры от эластомеров.

Рис. 7. Ползучесть полистирола при 25 ºС и различных значениях действующего напряжения

Для стеклообразных полимеров особенно важна способность выдерживать длительное действие внешней силы (нагрузки) сохранении размеров в заданных пределах. Это определяется величиной и закономерностями ползучести. На рис. 7 показаны кривые ползучести полистирола при разных нагрузках. Видно, что при нагружении мгновенно увеличивается длина образца за счет развития упругой деформации. Далее развивается замедленная уп­ругость, качественно аналогичная развитию высокоэластической деформации (элемент Кельвина—Фойгта). Замедленная упругость характеризует развитие вынужденно - эластической деформации. Далее возможны два случая: либо деформация перестает расти после достижения определенной величины, либо она развивается непрерывно. В первом случае мы говорим, что имеет место затуха­ющая ползучесть, во втором случае — незатухающая ползучесть. Последняя развивается как за счет истинно необратимой, так и за счет замедленной вынужденно - эластической деформации без об­разования шейки. Полимер может применятся как конструкцион­ный материал только в том случае, если под действием заданной нагрузки в нем развивается затухающая ползучесть, позволяющая обеспечить относительное постоянство размеров детали в услови­ях эксплуатации.

Исследование поведения стеклообразных полимеров в услови­ях циклических деформаций позволяет обнаружить некоторые релаксационные переходы при Т≤Тс . На рис. 8 схематически показаны релаксационные перехо­ды в полиметилметакрилате.

Рис. 8. Вторичные релаксационные переходы в полиметилметакрилате (пояснение в тексте)

Релаксационный переход, соответ­ствующий Тс , называется главным, или α- переходом. Другие пере­ходы — это соответственно β- и γ - переходы. Причины переходов, их молекулярный механизм не всегда можно однозначно устано­вить. В случае полиметилметакрилата (ПММА) установлено, что при частоте внешнего деформирующего напряжения 1 Гц α-переход наблюдается при Т= Тс = 100 °С и обусловлен, как мы знаем, тем, что именно при этих условиях сегменты в полиметилметакрилате следуют за изменением вектора напряжения. На эти пере­мещения затрачивается много механической энергии, которая пе­реходит в теплоту за счет внутреннего трения сегментов. При ох­лаждении до Т<ТС сегменты теряют подвижность и потери уменьшаются. При комнатной температуре (порядка 20 ºС) каж­дое изменение вектора напряжения сопровождается поворотом к (вращением) эфирной группы — СООСН3 вокруг связи С—С, со­единяющей эфирную группу с главной цепью. На эти перемещения затрачивается меньше энергии, чем на перемещение сегментов, поэтому высота пика, соответствующего β - переходу, меньше, I чем высота пика

α -перехода. Наконец, дальнейшее охлаждение «замораживает» и движения эфирных групп. Только в области температур около —267 ºС частота вращения метильных групп в группах — СООСНЗ . начинает совпадать с частотой поля, и мы наблюдаем γ -переход.

Релаксационные переходы в стеклообразных полимерах — β, γ и т. д. — называются вторичными релаксационными переходами. Они оказывают существенное влияние на механические свойства, особенно на хрупкость и сопротивление ударным нагрузкам.

ЯВЛЕНИЕ ХРУПКОСТИ ПОЛИМЕРНЫХ СТЕКОЛ

Обычное оконное стекло всегда хрупко. Органическое стекло, I как мы часто называем полиметилметакрилат, менее хрупко. Его I можно уронить, не разбив. Если взять другие стеклообразные полимеры, такие как полистирол, поливинилхлорид, поликарбонат и др., то окажется, что, во-первых, они все значительно менее хрупки, чем силикатное (оконное) стекло, а во-вторых, хрупкость их очень различается. Для нас стеклообразные полимеры ценны в первую очередь тем, что они обладают пониженной хрупкостью по сравнению с силикатным стеклом, т. е. большим сопротивле­нием разрушению при ударе.

Определим понятие хрупкости и пути ее регулирования. Хрупкость — это способность стеклообразных полимеров разрушаться при малых деформациях, меньших, чем деформация, соответству­ющая пределу вынужденной эластичности.

На рис. 6 кривая 1 типична для хрупкого полимера. Полимер становится хрупким тогда, когда время до разрушения много меньше, чем время релаксации, и поэтому никакой перегруппировки сегментов под действием силы не происходит. Это и определяет незначительную величину деформации при разрушении. Вынужденно - эластические деформации в хрупких полимерах развиться не успевают, но вследствие наличия остаточного свободного объема стеклообразном полимере (порядка 2,5 %) происходит его хрупкое разрушение при деформации около 1 % (или немного больше), в то время как силикатные стекла разрушаются при деформации 0,1%.

Хрупкость полимерных стекол принято оценивать по величине температуры хрупкости Тхр . Чем выше Тхр , тем более хрупким считается полимер.

Температура хрупкости—это температура, при которой полимер разрушается в момент достижения предела вынужденной эластичности. Чтобы определить Тхр , строят зависимость предела вынужденной эластичности σт от температуры. Как следует и рис. 6, σт (максимум на кривой σ—ε) увеличивается с уменьшением температуры. Зависимость σт — Т приведена на рис. 9. Koгда температура становится ниже Тхр , вынужденная эластичность не развивается, и тогда определяют прочность полимера σр , который стал хрупким. На рис. 9 приведена также кривая

зависимости σр от температуры. Точка пересечения кривых (σр = σт ) и определяет Тхр .

Зная Тхр и Тс , можно определить интервал температур, в котором полимер ведет себя как упругий нехрупкий материал. Если эластомеры применяют при температуре в пределах интервала высокоэластичности (между температурами стеклования и текучести), то стеклообразный полимер (пластмассу) применяют в интер­вале вынужденной эластичности (Тс —Тхр ). Полиметилметакрилат можно применять как конструкционный материал, потому ЧЯ для него Тс = 110 ºС, а Тхр = 10 ºС. Полистирол нельзя применять без специальной модификации его структуры, потому что для него Тс =100°С, а Тхр =90°С.

Температура хрупкости, как и Тс , зависит от молекулярной массы (рис. 10). При малой молекулярной массе, когда мы имеем дело с олигомером, значения Тс и Тхр совпадают. Когда молекулы становятся достаточно длинными и, следовательно, появляется гибкость, Тс растет быстрее, чем Тхр и возникает температурный интервал вынужденной эластичности (Тс —Тхр ) При дальнейшем росте молекулярной массы Тхр даже несколько

Рис. 9. Зависимость прочности σ р и предела вынужденной эластичности σ т от температуры

понижается, что приводит к увеличению интервала вынужденной эластичности для высокомолекулярных полимеров.

Из рис. 10 видно также, что с ростом молекулярной массы непрерывно ухудшается способность полимеров к необратимым деформациям. Это отражается в росте температуры текучести с ростом молекулярной массы. Рис. 10 показывает улучшение экс­плуатационных характеристик полимеров вообще (эластомеров и пластмасс) с ростом молекулярной массы: растут температурные интервалы высокоэластичности (Тт —Тс ) и вынужденной эластич­ности (Тс — Т хр ).

Рис. 10. Зависимость температур текучести (Т т ), стеклования (Тс ) и хрупкости (Т хр ) от молекулярной массы полимера

К-во Просмотров: 289
Бесплатно скачать Курсовая работа: Стеклование и стеклообразное состояние