Курсовая работа: Стилі керівництва і їх вплив на самозатвердження і розвиток співробітників
Такой технологический цикл возможно практически реализовать с помощью взаимного перемещения основных конструктивных элементов автомата — монтажной головки, координатного стола и магазина с компонентами. Исходя из этого, в настоящее время приняты следующие варианты комбинации перемещений основных элементов автоматов.
Вариант 1. Печатная плата и магазин с компонентами неподвижны (магазин может перемещаться только в направлении X). Компоненты захватываются монтажной головкой с необходимой позиции питателя и устанавливаются на посадочное место (рис. 6) (первый вариант автомата последовательного действия). Как видно из рисунка, монтажная головка перемещается в таких автоматах по всем направлениям (x, y, z) и вокруг своей оси (6), что позволяет ей по заданной программе выбирать требуемый элемент из питателя, перемещать и устанавливать его в любую точку на печатной плате. Как было отмечено выше, такие автоматы обладают наибольшей гибкостью и позволяют устанавливать компоненты любых типов, что наиболее эффективно в условиях мелкосерийного производства при большой номенклатуре изделий и типоразмеров компонентов. Их производительность может быть, повышена за счет применения двух монтажных головок. Кроме того, при такой схеме может быть легко осуществлен контроль электрических и геометрических параметров компонентов, которые перед установкой помещаются в устройство контроля.
1 — печатная плата; 2 —• бобины с упакованными компонентами; 3 — монтажная головка; 4 —устанавливаемый компонент; 5 — вакуумный пинцет (захват)
Рис. 6. Схема автомата-укладчика последовательного типа
Вариант 2. В этом случае (рис. 7) позиционирование места установки компонента осуществляется перемещением стола с печатнои платой в направлении X (второй вариант автомата последовательного действия). При этом цикл работы автомата состоит из следующих операций: 1) подача компонентов под монтажную головку (направление Х); 2) выбор компонента монтажной головкой (перемещение в направлении Y, Z); 3) возврат накопителей в исходное состояние; 4) перемещение стола с печатной платой под монтажную головку с позиционированием посадочного места относительно головки, установка компонента.
При использовании блока головок (до 30) и нескольких печатных плат такие системы могут обеспечить высокую производительность (рис 8). Однако наиболее эффективным является их применение для компонентов простой формы. Примером такой разработки является автомат МСМ VII (фирма «Philips»).
1 — печатная плата; 2 — лента с ПМ-компонентами; 3 — монтажная головка; 4 — монтируемый компонент
Рис. 7. Схема автомата с позиционированием места установки компонента с помощью рабочего стола
1 — бобина с ПМ-компонентами; 2 — блок монтажных головок; 3 — турель; 4 — двухкоординатный стол
Рис.8. Схема автомата с блоком монтажных головок
Вариант 3. Роторно-башенная схема построения автоматов (Rotary Turret Placement System) в последние годы находит все большее применение в конструкциях высокоскоростных автоматов-укладчиков. В этой схеме также используется блок монтажных головок, которые по кругу перемещаются с одной позиции в другую. Место установки компонента позиционируется координатным столом.
Применяется несколько разновидностей автоматов-укладчиков, реализующих роторную схему: с поворотом ротора вокруг вертикальной и горизонтальной оси и с различными вариантами подачи компонентов. Один из вариантов горизонтальной схемы показан на рис. 9. Роторная головка 1 имеет четыре вакуумных захвата и четыре рабочие позиции. На первой позиции захватывается компонент из питателя, бобины которого поворачиваются вокруг вертикальной оси на 90°. Во второй позиции осуществляется контроль электрических параметров компонента, в третьей – его центрирование, в четвёртой — установка на печатную плату, которая перемещается в направлении X, Y для совмещения захвата с посадочным местом компонента. Эти циклы повторяются каждой монтажной головкой, что обеспечивает высокую производительность автомата. Недостаток варианта — ограниченность номенклатуры устанавливаемых компонентов (без переналадки устройства чаще всего устанавливается один тип).
1 — ротор (револьверная головка); 2 — бобина с компонентами; 3 — карусель с бобинами; 4 — блок контроля электрических параметров; 5 - блок центрирования компонентов; 6 — двухкоординатный стол с печатной платой
Рис. 9. Схема автомата-укладчика роторного типа с вращением ротора вокруг горизонтальной оси:
Схема аналогичного по конструкции, но более производительного автомата показана на рис. 10. Он содержит большее количество монтажных головок и рабочих позиций для контроля электрических параметров и центровки, что расширяет номенклатуру монтируемых компонентов. Для подачи компонентов используется карусель с бобинами, поворачивающаяся вокруг вертикальной оси.
Рис.10. Схема многошпиндельного автомата-укладчика роторного типа
В последних разработках автоматов-укладчиков более широко применяется схема с ротором, вращающемся вокруг вертикальной оси (рис. 11). Такой автомат также содержит вращающийся ротор-башню, на которой размещается 10 или 12 монтажных головок. Для повышения универсальности и производительности каждая из головок имеет 1—5 вакуумных захватов. Центрирование компонентов осуществляется механическими устройствами или системами технического зрения, а совмещение с посадочным местом — двухкоординатным столиком. Подача плат производится с помощью конвейера. Некоторые системы содержат специальные пневматические подъемники для перемещения плат с одного конвейера на другой. Центрирование плат происходит по базовым отверстиям или по боковым кромкам. Первый метод обеспечивает большую точность и повторяемость этой операции. Для подачи компонентов к монтажной головке блок питателей совершает возвратно-поступательные движения в направлении X. При этом бобина с необходимым компонентом ориентируется для подачи его под очередной захват.
Рис.11. Схема автомата-укладчика с вертикальной осью вращения ротора
Фирмой «Philips» выпущена новая серия автоматов для установки ПМ-компонентов на GEM- платформе. Это оборудование обеспечивает модульность и гибкость, крайне необходимые современным производствам сборки печатных узлов по технологии поверхностного монтажа особенно в условиях серийного и крупносерийного выпуска продукции. При использовании машин на GEM-платформе с унифицированными конструктивами и программным обеспечением уменьшается стоимость установки на компонент, увеличивается загрузка оборудования, облегчается переход на новые изделия, повышается гибкость. В отличие от большинства высокопроизводительных автоматов на нем можно устанавливать не только малогабаритные компоненты, но и микросхемы с четырехсторонним расположением выводов в корпусах типа GFP, а также BGA.
Новое поколение машин фирмы «Philips» на сегодняшний день включает в себя два автомата: EMERALD-X — автомат установки компонентов с очень малым шагом и TOPAZ-X — высокоскоростной гибкий автомат. Эти автоматы отличаются более высоким коэффициентом загрузки и производительностью, чем их предшественники.
Автоматы с индексом «X» снабжены двойными питателями для матричных поддонов, которые позволяют менять пустые поддоны на новые без остановки работы автомата, устройством для склеивания лент и питателями для подачи компонентов из россыпи с увеличенной емкостью. В сочетании с возможностями, сохраненными от предыдущего (высоконадежная конструкция с малым временем обслуживания, тележки для групповой смены питателей, система распознавания штрих-кодов на питателях и др.), новые автоматы имеют минимальные потери времени и максимально возможный коэффициент загрузки. Еще одно преимущество таких автоматов — повышенная производительность установки компонентов. Новая система технического зрения с высокоэффективным освещением под разными углами улучшает распознаваемость компонентов «на лету», сокращая время центровки. Освещение под разными углами дает высококонтрастные изображения даже для сложных компонентов, таких, как микросхемы в корпусах BGA и CSP. TOPAZ-X может распознавать до восьми компонентов за один проход, что уменьшает время распознавания до 0,2 с/компонент.
Важным фактором, влияющим на повышение производительности, является новая система смены насадок «на лету» (во время движения, без потерь времени). На TOPAZ-X до четырех установочных головок из восьми могут иметь по три предварительно установленные насадки. Остальные четыре головки могут менять насадки в специальной станции. На EMERALD-X обе головки могут быть оснащены по заказу системой для смены насадок «на лету». Такая система позволяет увеличить производительность до 15%.
Если в питатели ошибочно заправлены компоненты другого типа или закончились компоненты, автомат даст сигнал оператору и, пропустив ошибку, продолжит собирать плату дальше, дав оператору время для устранения проблемы.