Курсовая работа: Структуризация задач принятия решений в условиях определенности Некорректно поставленные задачи
Решение принимается в условиях определенности, когда руководитель может с точностью определить результат каждого альтернативного решения, возможного в данной ситуации. Сравнительно мало организационных или персональных решений принимается в условиях определенности. Однако они все-таки имеют место. Кроме того, элементы сложных крупных решений можно рассматривать как определенные. Уровень определенности при принятии решений зависит от внешней среды. Он увеличивается при наличии твердой правовой базы, ограничивающей количество альтернатив и снижающей уровень риска.
??? ??? ?????????? ????, ???????, ??????????? ? ???????? ?????????? ??????????????, ? ???????? ????? ???? ?? ?????. ?????? ?????????? ????????, ????? ??????? ??????????? ? ???????? ????? ?????? ??????????????. ????????, ??????? ? ???????? ???????????????? ??????? ? ?????? ?????? ???????????. ? ?????? ?????? ???????? ????? ????? ?????? ???????????? ?????, ????? ??????? ????? ????????, ?????????? ?????????? ? ????? ????? ?????????? ??????????? ??????? ?? ??????? ???????? ? ????? ?? ?????????. ??????????? ????? ?? ????????? ???? ????????????? ?????? ??? ????????????? ???????????? ?????????????, ??????????? ????????????? ??????? ????? ????. (???. ?6)1.4 Методы
Решение может быть формальным и творческим. Принято считать, что если преобразование информации выполняется с помощью математических моделей, то выработанное решение считается формальным, если решение появляется в результате скрытой работы интеллекта человека, принимающего решение, то оно - творческое.
Такое деление в достаточной степени условно, поскольку чисто формального или чисто творческого решения не существует. Если решение вырабатывается с помощью математической модели, то знания и опыт человека (элементы творчества) используются при её создании, а интуиция (тоже момент творчества) – в момент, когда он задаёт то или иное значение параметра исходной информации или выбирает из множества альтернативных вариантов, полученных с помощью математической модели, один в качестве решения на управление. Если основным инструментом выработки решения является интеллект человека, то формальные методы, носителем которых практически является вся наука, скрыто присутствуют в его знаниях и опыте.
Формализуемые решения принимаются на основе соответствующих математических методов (алгоритмов). Математическая модель задачи оптимизации формализуемого решения включает следующие элементы:
1. заданную оптимизируемую целевую функцию (критерий управляемости): Ф=F(x1 ,x2 ,:,xn ), где xj (j=1,2,:,n) - параметры, учитываемые при принятии решения (отражающие ресурсы принятия решений);
2. условия, отражающие ограниченность ресурсов и действий ЛПР при принятии решений: gi (xj )<ai , ki (xj )=bi ; cj <xj <di , i=1,2,:,m; j=1,2,:, n.
Непременным требованием для решения задачи оптимизации является условие n>m.
В зависимости от критерия эффективности, стратегий и факторов управления выбирается тот или иной метод (алгоритм) оптимизации.
Основными являются следующие классы методов:
1. методы линейного и динамического программирования (принятия решения об оптимальном распределении ресурсов);
2. методы теории массового обслуживания (принятие решения в системе со случайным характером поступления и обслуживания заявок на ресурсы);
3. методы имитационного моделирования (принятие решения путем проигрывания различных ситуаций, анализа откликов системы на различные наборы задаваемых ресурсов);
4. методы теории игр (принятие решений с помощью определения стратегии в тех или иных состязательных задачах);
5. методы теории расписаний (принятие решений с помощью разработки календарных расписаний выполнения работ и использования ресурсов);
6. методы сетевого планирования и управления (принятие решений с помощью оценки и перераспределения ресурсов при выполнении проектов, изображаемых сетевыми графиками);
7. методы многокритериальной (векторной) оптимизации (принятие решений при условии существования многих критериев оптимальности решения)
и другие методы. (Ист. №9)
2. Некорректно поставленные задачи
В качестве основного объекта рассматривается операторное уравнение: Az = u , где A - линейный оператор, действующий из гильбертова пространства Z в гильбертово пространство U . Требуется найти решение операторного уравнения z , соответствующее заданной неоднородности (или правой части уравнения) u .
Такое уравнение является типичной математической моделью для многих физических, так называемых обратных, задач, если предполагать, что искомые физические характеристики z не могут быть непосредственно измерены, а в результате эксперимента могут быть получены только данные u , связанные с z с помощью оператора A .
Французским математиком Ж. Адамаром были сформулированы следующие условия корректности постановки математических задач, которые мы рассмотрим на примере записанного операторного уравнения. Задача решения операторного уравнения называется корректно поставленной (по Адамару), если выполнены следующие три условия (условия корректности):
1) задача имеет решение при любых допустимых исходных данных (решение существует ∀u ∈U );
2) каждым исходным данным u соответствует только одно решение (решение единственно);
3) решение устойчиво (если u n →u , , Az = u , то z n →z).
Смысл первого условия заключается в том, что среди исходных данных нет противоречащих друг другу условий, что исключало бы возможность решения задачи.
Второе условие означает, что исходных данных достаточно для однозначной определённости решения задачи. Эти два условия обычно называют условиями математической определённости задачи. Условие 2) обеспечивается тогда и только тогда, когда оператор A является взаимно однозначным (инъективным). Условия 1) и 2) означают, что существует обратный оператор , причем его область определения D( ) (или множество значений оператора A , R(A) ) совпадает с U .
Условие 3) означает, что обратный оператор является непрерывным, т.е. “малым” изменениям правой части u соответствуют “малые” изменения решения z . Третье условие обычно трактуется как физическая детерминированность задачи. Это объясняется тем, что исходные данные физической задачи, как правило, задаются с некоторой погрешностью; при нарушении же третьего условия как угодно малые возмущения исходных данных могут вызывать большие отклонения в решении.
Задачи, не удовлетворяющие хотя бы одному условию корректности, называются некорректными задачами (или некорректно поставленными). Более того, Ж. Адамар считал, что только корректные задачи должны рассматриваться при решении практических задач. Однако хорошо известны примеры некорректно поставленных задач, к изучению и численному решению которых приходится прибегать при рассмотрении многочисленных прикладных задач. Нужно отметить, что устойчивость и неустойчивость решения связаны с тем, как определяется пространство решений Z . Выбор пространства решений (в том числе и нормы в нем) обычно определяется требованиями прикладной задачи. Задачи могут быть некорректно поставленными при одном выборе нормы и корректно поставленными при другом.