Курсовая работа: Структурный анализ системы

Суть явления дифракции поясняется на рис.1, где изображены плоские волны, падающие на ряд рассеивающих центров. Под действием падающего пучка каждый такой центр испускает сферические волны; эти волны интерферируют друг с другом, что приводит к образованию волновых фронтов, распространяющихся не только в направлении первоначального падающего пучка, но и в некоторых других направлениях. Так называемая картина дифракции Лауэ (лауэграмма), полученная при прохождении пучка рентгеновского излучения сквозь тонкую кристаллическую пластинку минерала берилла, представлена на рис.2.

Рис.1. Пояснение сути явления дифракции.

Рис.2. Лауэграмма берилла.

Картина дифракции показывает наличие вращательной оси симметрии 6-го порядка, что характерно для гексагональной кристаллической структуры. Таким образом, эта картина несет важную информацию о структуре кристалла, на котором происходит дифракция, что и было, в частности, предметом изысканий У. Брэгга и его сына У. Брэгга.

На основе явления дифракции рентгеновского излучения отец и сын Брэгги создали необычайно ценный экспериментальный метод рентгеноструктурного анализа кристаллов. Их работы знаменуют собой начало развития основ современного рентгеноструктурного анализа. Благодаря рентгеновским установкам и компьютерам определение расположения атомов даже в сложном кристалле стало почти рутинным делом.

Какого же рода информацию о структуре кристалла может дать рентгеноструктурный анализ? Рентгеновское излучение - это электромагнитные волны, электрические поля которых взаимодействуют с заряженными частицами, а именно с электронами и атомами твердого тела. Поскольку масса электронов значительно меньше массы ядра, рентгеновское излучение эффективно рассеивается только электронами. Таким образом, рентгенограмма дает информацию о распределении электронов. Зная направления, в которых дифрагировало излучение, можно определить тип симметрии кристалла или кристаллический класс (кубический, тетрагональный и т.д.), а также длины сторон элементарной ячейки. По относительной интенсивности дифракционных максимумов можно определить положение атомов в элементарной ячейке.

По существу дифракционная картина представляет собой математически преобразованную картину распределения электронов в кристалле - фурье-образ. Следовательно, она несет информацию и о структуре химических связей между атомами. Наконец, распределение интенсивности в одном дифракционном максимуме дает информацию о размере кристаллитов, а также о несовершенствах (дефектах) решетки, механических напряжениях и других особенностях кристаллической структуры [1].

2. Кристаллическая структура и дифракция

Кристалл - дискретная трехмерная периодическая пространственная система частиц. Макроскопически это проявляется в однородности кристалла и его способности к самоогранке плоскими гранями со строго постоянными двугранными углами. Микроскопически - кристалл может быть описан как кристаллическая решетка, т.е. правильно периодически повторяющаяся система точек (центров тяжести частиц, слагающих кристалл), описываемая тремя некомпланарными осевыми трансляциями и тремя осевыми углами (рис.3).

Рис.3 Трансляционная ячейка и пучок трансляций

Различая равные и неравные по абсолютной величине трансляции, равные, неравные, прямые непрямые осевые углы, можно распределить все кристаллические решетки по семи кристаллическим системам (сингониям) следующим образом:

Триклиннаяa≠b≠cα≠β≠γ≠900

Моноклиннаяa≠b≠cα=γ= 900 β≠900

Ромбическаяa≠b≠cα=β=γ= 900

Тригональнаяa=b=сα=β=γ≠ 900

Тетрагональнаяa=b≠сα=β=γ= 900

Гексагональнаяa=b≠сα=β=900 γ= 1200

Кубическаяa=b=сα=β=γ= 900

Однако если учесть трансляционную симметрию, то возникают 14 трансляционных групп, каждая из которых образует решетку Бравэ.

Решетка Бравэ - бесконечная система точек, образующаяся трансляционным повторением одной точки. Любая структура кристалла может быть представлена одной из 14 решеток Бравэ. При малых скоростях зарождения и роста возникают крупные одиночные монокристаллы. Пример: минералы. При высоких скоростях образуется поликристаллический конгломерат. Пример: металлы и сплавы. Дальний порядок, присущий кристаллам, исчезает при переходе к аморфным телам и жидкостям, в которых имеется лишь ближний порядок в расположении частиц.

Преимущество рентгеноструктурного анализа в его высокой избирательности. Если монохроматический пучок рентгеновского излучения падает в произвольном направлении на монокристалл, можно наблюдать выходящий (но не дифрагированный) пучок в том же направлении. Дифрагированные пучки возникают лишь при нескольких строго определенных (дискретных) углах падения относительно кристаллографических осей. Это условие лежит в основе метода вращения кристалла, в котором допускается вращение монокристалла относительно определенной оси, причем точно определяются те направления, для которых наблюдается дифракция.

В других экспериментах могут использоваться порошкообразные кристаллические образцы и монохроматический пучок; - такой метод носит название Дебая - Шеррера. В этом случае имеется непрерывный спектр ориентаций отдельных кристаллитов, но достаточно интенсивные дифрагированные пучки дают лишь кристаллиты с определенной ориентацией. Порошковый метод не требует выращивания крупных монокристаллов, в чем и состоит его преимущество перед методами Лауэ и вращения кристалла. В методе Лауэ используются монокристалл и пучок рентгеновского излучения, обладающий непрерывным спектром, так что кристалл как бы сам выбирает подходящие длины волн для образования дифракционных картин.

Хотя рентгеноструктурный анализ является старейшим методом изучения твердых тел на атомном уровне, он продолжает развиваться и совершенствоваться. Одно из таких усовершенствований состоит в применении электронных ускорителей в качестве мощных источников рентгеновского излучения - синхротронного излучения. Синхротрон - это ускоритель, который обычно используется в ядерной физике для разгона электронов до очень высоких энергий. Электроны создают электромагнитное излучение в диапазоне от ультрафиолетового до рентгеновского излучения. В сочетании разработанными твердотельными детекторами частиц эти новые источники смогут, как ожидается, дать много новой детальной информации о твердых телах [3].

3. Взаимодействие рентгеновского излучения с веществом

Рентгеновские лучи поглощаются в той или иной степени всеми веществами, через которые они проходят.д.оля энергии лучей, поглощенной в веществе, зависит от толщины поглощающего слоя, природы вещества и длины волны лучей. Рентгеновские лучи теряют при прохождении через вещество часть своей энергии вследствие двух процессов:

1. истинного поглощения, т.е. вследствие превращения энергии их фотонов в другие виды энергии;

2. рассеяния, т.е. изменения направления их распространения.

Общий закон, количественно определяющий ослабление любых однородных лучей в поглощающем эти лучи веществе, можно сформулировать так: в равных толщинах одного и того же однородного вещества поглощаются равные доли энергии одного и того же излучения. Если интенсивность лучей, падающих на вещество, обозначить через I0 , а интенсивность их после прохождения через пластинку из поглощающего вещества толщиной в t- через It , то этот закон можно выразить так: . Тогда

К-во Просмотров: 328
Бесплатно скачать Курсовая работа: Структурный анализ системы