Курсовая работа: Течение Пуазейля

Система уравнений Навье — Стокса незамкнута, так как содержит шесть неизвестных:Vx , Vy , Vz , р, с и м. Еще одним уравнением, связывающим эти неизвестные, является уравнение неразрывности (3).

В качестве уравнений, замыкающих систему, используют уравнения состояния среды и зависимости вязкости от параметров состояния. Во многих случаях приходится применять также другие термодинамические соотношения.

Для несжимаемой жидкости divV = 0, получим выражения, напрямую следующие из системы (8)

В векторной форме уравнение Навье-Стокса для несжимаемой жидкости примет вид:

(9)

4. Установившееся ламинарное течение между параллельным плоскостями

Пусть вязкая жидкость течет в канале, образованном двумя параллельными стенками, одна из которых движется в своей плоскости с постоянной скоростью (см. рисунок).

а – схема течения; б – распределение скоростей при отсутствии градиента давления (течение Куэтта); в – распределение скоростей в случае неподвижных граничных плоскостей (течение в плоском канале).

Размер канала по направлению нормали к плоскости чертежа (вдоль оси z) считаем достаточно большим, чтобы можно было не учитывать влияние стенок, параллельных плоскости хОу. Кроме того, допускаем, что движение вызвано не только перемещением одной из стенок канала, но и перепадом (или градиентом) давления по направлению оси х. Влиянием массовых сил пренебрегаем, т.к. число Фруда мало из-за малости h, а линии тока считаем прямыми, параллельными оси х.

Тогда исходные условия задачи выражаем в виде:

Из уравнения неразрывности сразу заключим, что а поскольку это будет выполнено во всех точках, то и Ввиду отсутствия движения вдоль оси z все производные по этой координате также обратятся в нуль, и уравнение Навье-Стокса в проекции на ось z можно не писать.

Тогда система уравнений движения сведется к двум уравнениям:

Первое получается из проекции уравнения Навье-Стокса на координатную ось x, а второе из этих уравнений свидетельствует, что давление зависит только от х, т.е. p(y)=p(z)=0, и так как то можно перейти от частных производных к полным:

Обозначим , проинтегрируем это уравнение дважды, получим:

Так как в соответствии с рисунком и принятыми допущениями давление зависит только от координаты x. Для отыскания постоянных интегрирования и используем граничные условия:

Таким образом закон распределения скоростей в плоском канале запишется в виде:

(10)

5. Течение Куэтта

Течение Куэтта – безградиентное течение В этом случае единственной причиной движения служит перемещение пластины. Течение характеризуется линейным законом распределения скоростей (рис. б).

К-во Просмотров: 309
Бесплатно скачать Курсовая работа: Течение Пуазейля