Курсовая работа: Течение Пуазейля

1. Постановка задачи

2. Уравнение неразрывности

3. Уравнение движения вязкой жидкости в форме Навье-Стокса

4. Установившееся ламинарное течение между параллельным плоскостями

5. Течение Куэтта

6. Течение Пуазейля

7. Общий случай течения между параллельными стенками

8. Пример задачи

Список используемой литературы


1. Постановка задачи

Ламинарные течения, некоторые из которых рассмотрены в данном курсовом проекте, встречаются в разнообразных технических задачах, в частности, в зазорах и малых полостях машин. В особенности при течении таких вязких жидкостей как масло, нефть, различные жидкости для гидропередач образуются устойчивые ламинарные течения, для описания которых надежной базой могут послужить уравнения Навье–Стокса. Течение Гартмана, подобное течению Пуазейля, применяется, к примеру, в МГД-насосах. В этом случае рассматривается плоское стационарное течение электропроводящей жидкости между двумя изолированными пластинами в поперечном магнитном поле.

Задача данного курсового проекта – рассмотрение и нахождение основных характеристик плоского стационарного ламинарного течения вязкой несжимаемой жидкости при параболическом распределении скоростей (течения Пуазейля).

2. Уравнение неразрывности

Закон сохранения массы для движущейся произвольным образом жидкости выражается уравнением неразрывности или сплошности, которое является одним из фундаментальных уравнений гидромеханики. Для его вывода проведем в жидкости фиксированную в пространстве замкнутую поверхность S, ограничивающую объем W, и выделим на ней элементарную площадкуdS.Черезn обозначим единичный вектор внешней к Sнормали. Тогда произведение сVn dSбудет представлять собой массу, вытекающую из объема Wили поступившую в него за единицу времени, в зависимости от направления скорости на площадкеdS.Так какnвнешняя нормаль, тоVп > 0 на тех площадкахdS, где жидкость вытекает из объема W, и Vп < 0 на той части поверхности S, через которую она втекает в этот объем. Следовательно, интеграл представляет собой разность масс жидкости, вытекшей из объема и поступившей в него за единицу времени.

Это изменение массы можно подсчитать и иным способом. Для этого выделим элементарный объем dW. Масса жидкости в этом объеме может изменяться из-за неодинаковости притока и оттока. Секундное изменение массы в объеме dW будет равно а секундное изменение массы в объеме W выразится интегралом .

Получившиеся выражения можно приравнять, так как они дают одну и ту же величину. При этом следует учесть, что первый интеграл положителен, если через поверхность S вытекает жидкости больше, чем втекает, а второй при этом же условии – отрицателен, так как ввиду сплошности течения в рассматриваемом в рассматриваемом случае плотность уменьшается во времени .

(1)

По теореме Остроградского – Гаусса:

В векторном анализе сумма частных производных от проекций вектора по одноименным координатам называется дивергенцией или расхождением вектора. В данном случае


поэтому уравнение (1) можно переписать в виде

Так как объем Wпроизвольный, подынтегральная функция равна нулю, т.е.

(2)

Уравнение (2) является уравнением неразрывности в дифференциальной форме для произвольного движения сжимаемой жидкости. Соотношение (1) можно рассматривать как интегральную форму уравнения неразрывности.

Если будем рассматривать условие сохранения массы движущегося жидкого объема, то придем также к уравнению (2), которому в этом случае можно придать иной вид.

Поскольку с = с (x, y, z, t) и при движении жидкого объема х = х(t),

у = у (t), z =z (t), то

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 307
Бесплатно скачать Курсовая работа: Течение Пуазейля