Курсовая работа: Технология высокоскоростной механической обработки газотурбинных двигателей

Рис3. Предпочтительные стратегии при ВСО

При выборе траекторий для ВСО надо исключать резкие изменения в движениях инструмента, особенно в зонах врезания, когда идет проход полной шириной фрезы. Это достигается трохоидальной обработкой, когда в процессе врезания фреза движется по окружности (рис. 2, 3). Идеально, когда САМ система сама строит трохоиду в местах, где необходимо осуществить врезание. Такая стратегия используется и при формировании пазов, которые ранее обрабатывались одним ходом фрезы того же диаметра, что и ширина паза.

Предпочтение должно отдаваться спиральным стратегиям, где инструмент, однажды врезавшись, сохраняет непрерывный и равномерный контакт с заготовкой (рис. 3,а) или стратегиям эквидистантного смещения контура, которые длительное время сохраняют контакт инструмента с заготовкой, с одним заходом и выходом (рис. 3,б).

Таким образом, САМ система для ВСО должна обеспечить:

широкий набор вариантов гладкого подвода-отвода и связок между проходами,

набор стратегий спиральной и эквидистантной обработки зон как на чистовой, так и на черновой обработке и поиск оптимальной стратегии в различных зонах,

автоматическое сглаживание траекторий в углах,

исключение проходов полной шириной фрезы и автоматическое применение трохоидального врезания в этих местах,

оптимизацию подач для сглаживания нагрузки на инструмент.

7. Режущий инструмент для ВСО должен иметь повышенную стойкость. Ведущие инструментальные фирмы предлагают широкий набор фрез для ВСО с подробными рекомендациями по областям их применения и режимам резания. Разрабатываются новые мелкодисперсные сплавы, способные надежно работать на высоких скоростях. Режущая часть инструмента изготовляется из различных материалов, включая микрозернистые карбиды, поликристаллические алмазы, поликристаллический нитрид бора с кубической решеткой, карбид титана и др. Часто применяются износостойкие покрытия, что позволяет повысить скорость обработки или стойкость инструмента.

Важно обратить внимание на системы вспомогательного инструмента, которые обеспечивают крепление фрез. В связи со снижением сил резания в процессе ВСО на первый план выходят другие факторы, такие как величины биения фрезы, вибрации.

Так как задача ВСО – обеспечить высокое качество обрабатываемой поверхности, то дополнительное внимание следует уделить подбору режимов резания с точки зрения нахождения зон, где отсутствуют вибрации при высоких скоростях резания. Таким образом, ВСО требует особого внимания к балансировке инструмента. Для этого могут использоваться специальные патроны с возможностью балансировки или сбалансированные оправки для термозажима.

Для высокоскоростных станков обычно используют вспомогательный инструмент с хвостовиками HSK (Hohlschafte Kegel). В России хвостовики HSK внедрены ГОСТ Р 51547–2000, имеют укороченный полый конус, особую схему закрепления в гнезде шпинделя, повышенную точность изготовления. Статическая податливость хвостовиков HSK в 6...7 раз меньше, чем у хвостовиков с конусом 7: 24.

Монолитный твердосплавный инструмент для высокоскоростного фрезерования на российском рынке представлен рядом фирм:

«ВНИИинструмент» (Россия, Москва) – новые инструменты для высокоскоростной обработки, в том числе и монолитные концевые твердосплавные фрезы;

НПФ "Порошковый инструмент. Металлы" (Россия, Санкт-Петербург) монолитные твердосплавные фрезы для обработки чугуна, бронзы, цветных металлов и пластмассы;

ОАО "Томский инструмент" (Россия, Томск) – новые твердосплавные фрезы для обработки сталей, в том числе и закаленных, чугунов и легких сплавов. Фрезы изготовлены из твердого сплава с содержанием WC 90% и Co 10% и с размером зерен 0,5 … 0,7 мкм;

компания SGS Tool Company (США) – инструмент для обработки жаропрочных, нержавеющих сталей, титана, закаленной инструментальной стали до твердости 65HRС;

компания Sandvik Coromant (Швеция) – цельные твердосплавные концевые фрезы;

компания Hanita (Израиль) – многозубые твердосплавные черновые и чистовые концевые фрезы для обработки конструкционных и закаленных сталей при форсированных режимах резания;

фирма Mitsubishi Carbide (Япония) – концевые монолитные твердосплавные концевые фрезы с износостойкими покрытиями для обработки закаленных материалов твердостью до 70 HRC;

компания Seco (Италия) – монолитные концевые фрезы с покрытием для обработки легированных и титановых сплавов, конструкционных сталей;

фирма Korloy (Южная Корея) – монолитные твердосплавные концевые фрезы высокой прочности за счет ультрамелкозернистой структуры материала – основы с высокой точностью обработки, обеспечиваемой острой режущей кромкой;

фирма Iscar (Израиль) – гамма монолитных твердосплавных фрез;

фирма Kennametal Hertel (Германия, США) – монолитный твердосплавный инструмент и др.

Рис. 4. Графитовый электрод после ВСО размер 350×200 мм; 9600 шестигранных отверстий с радиусом 0,2 мм; обработка наружной поверхности шаровой фрезой диаметром 10 мм; обработка отверстий – черновая фрезой диаметра 1,5 мм; чистовая фрезой диаметра 0,4 мм; частота оборотов шпинделя 45000 мин-1, время обработки 34 ч.

Таким образом, для успеха ВСО необходимо сочетание надлежащего уровня оборудования и системы подготовки УП. Это и обеспечивает требуемый результат: существенное сокращение времени обработки деталей как за счет высокоскоростной обработки, так и за счет уменьшения объема ручной доводки детали и возможности обрабатывать термообработанную инструментальную сталь и другие материалы (рис. 4). Если учесть при этом наличие ускоренной подготовки УП необходимого уровня, то налицо резкое сокращение времени на технологическую подготовку производства, что, собственно говоря, и является основной целью современного предприятия. При загрузке станка около 120 ч в неделю он с лихвой окупает все затраты, связанные с его приобретением.

8. Сравнение стоимости вариантов при внедрении высокоскоростного оборудования является обязательным. Стоимость станка для ВСО в среднем в 2 раза выше, чем обычного с аналогичным размером стола. Стоимость их работы приблизительно одинакова, если не учитывать, что цена режущего инструмента для высокоскоростной обработки графитовых и медных электродов в 4 ... 5 раз, а для высокоскоростной обработки инструментальных сталей в 10 ... 12 раз выше, чем инструмента, применяемого для традиционной механообработки. Частично эта высокая стоимость компенсируется более долгим сроком службы инструмента, так как он работает с меньшей глубиной резания. Тем не менее, шпиндели станков и инструмент требуют особого внимания из-за более высокой цены их замены. Поэтому в условиях реального производства при внедрении высокоскоростной обработки необходим соответствующий просчет вариантов.

К-во Просмотров: 477
Бесплатно скачать Курсовая работа: Технология высокоскоростной механической обработки газотурбинных двигателей