Курсовая работа: Теплопроводность жидкостей и газов
16
22,5
0,1765
0,1411
0,0237
0,0226
403
86,5
68,2
35,6
0,190
0,167
0,158
6,9
3. Теплопроводность жидкостей и газов
Теплопроводность , один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При теплопроводности перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.
Отклонения от закона Фурье могут появиться при очень больших значениях grad T (например, в сильных ударных волнах), при низких температурах (для жидкого гелия Не) и при высоких температурах порядка десятков и сотен тысяч градусов, когда в газах перенос энергии осуществляется не только в результате межатомных столкновений, но в основном за счёт излучения (лучистая теплопроводность). В разреженных газах, когда l сравнимо с расстоянием L между стенками, ограничивающими объём газа, молекулы чаще сталкиваются со стенками, чем между собой. При этом нарушается условие применимости закона Фурье, и само понятие локальной температуры газа теряет смысл. В этом случае рассматривают не процесс теплопроводности в газе, а теплообмен между телами, находящимися в газовой среде.
4. Теплопроводность газов
Для идеального газа, состоящего из твёрдых сферических молекул диаметром d, согласно кинетической теории газов, справедливо следующее выражение
(3.4)
где — плотность газа, cv — теплоёмкость единицы массы газа при постоянном объёме, V — средняя скорость движения молекул. Поскольку J пропорциональна 1/р, а ~ р (р — давление газа), то Т. такого газа не зависит от давления. Кроме того, коэффициент теплопроводности и вязкости связаны соотношением: . В случае газа, состоящего из многоатомных молекул, существенный вклад в дают внутренние степени свободы молекул, что учитывает соотношение:
,
где = ср/cv , ср — теплоёмкость при постоянном давлении. В реальных газах коэффициент теплопроводности — довольно сложная функция температуры и давления, причём с ростом Т и р значение возрастает. Для газовых смесей может быть как больше, так и меньше коэффициента теплопроводности компонентов смеси, то есть теплопроводности - нелинейная функция состава.
Если газ неравномерно нагрет , т. е. температура в одной его части выше или ниже, чем в другой, то наблюдается выравнивание температуры: более нагретая часть охлаждается, тогда, как более холодная нагревается.
Очевидно, что это связано с потоком тепла от более нагретой части газа к более холодной. Это явление возникновения потока тепла в газе называется теплопроводностью, В любом теле, в частности в газе, предоставленном самому себе, теплопроводность приводит к выравниванию температур, и этот процесс, конечно, нестационарный. Но часто встречаются и случаи, когда разность температур искусственно поддерживается постоянной.
Например, в электрической лампе накаливания газ, находящийся непосредственно около накаленной нити, имеет высокую температуру (равную температуре самой нити), тогда как газ, прилегающий к стенкам стеклянного баллона лампы, обладает значительно более низкой температурой. Через некоторое время после включения лампы устанавливается постоянная разность температур между нитью и стенками. Это постоянство обеспечивается, с одной стороны, электрической энергией, подводимой к нити из электрической сети, с другой стороны — отдачей тепла от стенок лампы к окружающему ее воздуху. При этих условиях в газе, находящемся в лампе, устанавливается стационарный, т. е. не изменяющийся со временем, поток тепла. Установившаяся стационарная разность температур зависит от теплопроводности газа (для лампы накаливания надо иметь в виду, что кроме отвода тепла через газ в данном частном случае отвод тепла происходит главным образом в результате излучения).
В приведенном примере лампы расчет потока тепла представляет большие трудности, связанные со сложной формой нити и сосуда, вследствие чего распределение температуры в газе тоже оказывается весьма сложным.
Чтобы найти количественные закономерности, характеризующие процесс теплопроводности, мы рассмотрим более простую задачу
Пусть вдоль какого-нибудь направления в газе, например, вдоль оси X, температура меняется от точки к точке, т. е. является функцией v. в то время как в плоскости, перпендикулярной к этой оси, температура всюду одинакова
Изменение температуры вдоль оси X характеризуется градиентом температуры .