Курсовая работа: Теплопроводность жидкостей и газов

Попытка учесть роль внутренних колебательных степеней свободы была сделана Е. Боровиком. Им получена формула для теплопроводности

(3.12)

где r - радиус молекулы.

При оценке работ рассматриваемого направления, возникает вопрос:

В какой степени корректно использование общей формулы Дебая для жидкостей?"

Экспериментальные данные показывают, что теплопроводность жидкостей тем больше, чем больше ее удельная теплоемкость CV. Следовательно, теплоемкость может входить в выражение для λ. Помимо этого, в жидкостях происходят явления, аналогичные тем, которые наблюдаются в твердых телах, а именно, коллективные колебания молекул распространяются со скоростью звука и область их распространения ограничивается "длиной свободного пробега".

Кроме того, представление о переносе тепла дебаевскими волнами отражает важную особенность жидкого состояния - коллективный характер колебаний части молекул жидкости (в отличие от газового состояния с хаотическиеми перескоками молекул).

Рассмотрим третье направление – полуэмпирические методы расчета теплопроводности жидкости.

В работе А.Миснара вывод формулы для теплопроводности сделан на основе общей формулы Дебая: λ ~ ρ ·Uф ·СV ·ℓф, выражающей зависимость коэффициента теплопроводности от плотности ρ, скорости звука U, удельной (объемной) теплоемкости СV и длины свободного пробега носителей энергии - фононов - ℓф. По аналогии с приближенной формулой для скорости звука в твердом теле


(3.13)

А.Миснар предложил выразить скорость звука в жидкости через Ткип,

и плотность ρ, т.е

(3.14)

Однако сопоставление с экспериментом выявляет довольно значительное расхождение с расчетом; при одинаковом числе атомов в молекуле отклонения тем больше, чем больше вязкость жидкости. Если ввести коэффициент динамической вязкости μ, то скорость звука можно представить следующей зависимостью Uф ~ (Ткип/ρ)1/2 ·μ1/15.

В формуле Дебая осталось выразить произведение СV ·ℓф через физические характеристики жидкости. При одинаковом числе атомов произведение СV ·ℓф, с точностью до постоянного множителя, равно

Тогда формула для λ принимает следующий вид:

(3.15)

Пренебрегая членом, содержащим вязкость μ, Миснар получил следующее выражение для расчета теплопроводности жидкости:

(3.16)


Множитель В можно считать постоянным для жидкостей, имеющих одинаковое число атомов в молекуле. Множитель В уменьшается с увеличением числа атомов в молекуле. Подбор величины В ≈ 90/N1/4. Тогда окончательный вид выражения для расчета теплопроводности жидкостей при нормальных условиях будет равна:

, Дж/(м·с·К) (3.17)

где Ткип – температура кипения; ρ - плотность при t = 0 C иатмосферном

давлении; Срo - удельная теплоемкость; N - число атомов в молекуле.

Расхождение с экспериментальнымиданными составляет менее 10%.


Заключение

В своей работе я рассматривал теплопроводность жидкостей и газов. В общем случае я выяснил, что коэффициент теплопроводности для некоторых газов, жидкостей и твёрдых тел при атмосферном давлении, зависит от агрегатного состояния вещества (что видно, если посмотреть таблицу в моей курсовой работе, а лучше, к примеру, книгу о теплопроводности жидкостей и газов где приведены все газы и жидкости и подсчитан для некоторой температуры), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора).

Если подробно рассматривать газа и жидкости , то как и для газа так и для жидкостей было сделано много различных опытов, впоследствии которых были получены формулы для определения .

Для различных газов, будь он, идеальный газ или реальный газ или ещё какой-то в конечном итоге видно что если к примеру взять газ идеальный, состоящий из твёрдых сферических молекул диаметром d, согласно кинетической теории газов, была получена конкретная формула для определения , если взять реальный газ, то довольно сложная функция температуры и давления, причём с ростом Т и р значение возрастает, это я рассмотрел как пример для идеального и реального газа, (существуют газовые смеси, газ, состоящий из многоатомных молекул, для определения надо воспользоваться внутренними степенями свободы молекул, и другие примеры газов)

Теперь переду к теплопроводности жидкостей, как я уже говорил, было тоже сделано множество опытов и получено, благодаря опытных данных, формулы для определения .Так вот в исследование посвященном теплопроводности жидкостей, как я уже писал в своей курсовой работе можно увидеть три основных направления: 1.Вычисление кинетических коэффициентов средствами статистической физики;2. Использование моделей теплового движения и механизмов переноса;3. Полуэмпирический подход. Не буду говорить подробно о каждом из них, так как более подробно я рассматривал это в своей курсовой работе, но если сказать кратко, то все эти направления были сделаны множеством учёных, основанных на предыдущих работах своих предшественников, и каждый привносил что новое для определения , основываясь. Опять же на различных представлениях. Как видно, опять же из моей курсовой работы, именно для определения для жидкостей было получено и вправду большое количество формул для разных случаев определения жидкостей.


Список используемых источников

К-во Просмотров: 352
Бесплатно скачать Курсовая работа: Теплопроводность жидкостей и газов