Курсовая работа: Теплопроводность жидкостей и газов

При стационарных условиях количество тепла Q, протекающего в единицу времени через газ, равно мощности источника энергии, за счет которого поддерживается заданный градиент температуры. Эта мощность (обычно электрическая) и подлежит измерению при экспериментальном определении коэффициента теплопроводности. В тех случаях, когда газ, в котором существует градиент температуры, предоставлен самому себе, т. е. к нему извне не подводится энергия, теплопроводность приводит к выравниванию температуры. Сначала мы и рассмотрим такую нестационарную теплопроводность. Как мы увидим, закон выравнивания температуры весьма напоминает процесс выравнивания концентрации посредством диффузии.

5. Теплопроводность жидкости

В исследованиях, посвященных теории теплопроводности жидкостей, можно увидеть три основных направления:

1. Вычисление кинетических коэффициентов средствами статистической физики.

2. Использование моделей теплового движения и механизмов переноса.

3. Полуэмпирический подход.

Рассмотрим первое из этих направлений .

Исторически первой попыткой расчета коэффициента теплопроводности путем использования аппарата статистической физики можно считать работу Энскога. В теории Энскога используется модель молекул - жестких шаров, которая позволяет ограничиться учетом лишь парных соударений молекул и тем самым воспользоваться схемой кинетического уравнения Больцмана.

Непосредственно к жидкостям метод Энскога может быть применен в

качестве первого приближения теплопроводности по газу т.к. схема кинетического уравнения Больцмана не содержит основного элемента, свойственного жидкому состоянию - взаимодействия коллектива молекул.

Второе направление использует различные представления модельного характера о природе теплового движения и механизмах переноса. Так, например, существует группа работ, в основу которой положена решеточная модель жидкости. В них предполагается, что тепловое движение молекул, в основном, сводится к колебательным движениям вокруг временных положений равновесия в квазикристаллических "ячейках". В соответствии с этим предполагается, что перенос тепла происходит за счет обмена энергией при непосредственном "столкновении" колеблющихся соседних молекул.

Теплопроводность жидкости предлагается рассчитывать по формуле

(3.6)

где νк - частота колебаний, aкол - амплитуда колебаний,

Далее рассмотрим работы, где использовано представление о колебательном характере теплового движения в жидкостях по аналогии с теорией Дебая для твердых тел, где перенос тепла осуществляется посредством гиперакустических колебаний среды (фононов). Здесь теплопроводность жидкости выражается соотношением:

(3.7)

где Uф - скорость звука, ℓф - средняя длина свободного пробега,

ρ – плотность.

Формула для жидкостей была предложена Л. Бриллиюэном в 1914 г.

Многие исследователи пользовались выражениями, которые являются упрощенными выражениями формулы для твердых тел Дебая. Первая в этом направлении работа была выполнена Н.П. Пашским. Формула Пашского может быть приведена к виду

( 3.8)

гдеа - среднее расстояние между молекулами, L - характеристическая константа.

Эта формула аналогична формуле Дебая, если длина свободного пробега волн выражается соотношением

(3.9)

где b - эмпирический (поправочный) коэффициент.

Американский ученый Бриджмен предположил, что средняя длина свободного пробега волн ℓ равна среднему расстоянию между

молекулами а,

(3.10)

Для теплопроводности получается формула

(3.11)

К-во Просмотров: 347
Бесплатно скачать Курсовая работа: Теплопроводность жидкостей и газов