Курсовая работа: Термодинамическое равновесие гетерогенных плазменных систем с суще

, (1.1.2)

где μа, μi , μe -химические потенциалы соответственно атома, иона и электрона, μm входят справа и слева в равенство (1.1.2) и могут быть сокращены.

Пренебрегая взаимодействием между компонентами газовой плазмы, химический потенциал компонента α определим по формуле для идеального газа [1]:

, (1.1.3)

где Sα – статистическая сумма;

; (1.1.4)

- число частиц сорта α в объеме плазмы V.

В (1.1.4) суммирование распространено на все состояния n частиц сорта α; qαn – статистический вес, а множитель exp(-Eαn /kT) определяет относительную вероятность состояния частицы с энергией Eαn (величина Eαn должна отсчитываться от общего уровня энергии группы частиц, участвующих в рассматриваемой реакции).`

Подставляя (1.1.3) в ( 1.1.2), получаем условие равновесия

или

. (1.1.5)

Уточним (1.1.4) для статистических сумм S (для простоты индекс α опускаем). Входящая в (1.1.4) полная энергия Е частиц слагается из энергии внутренних степеней свободы j и энергии поступательного движения К. следовательно, (1.1.4) можно записать следующим образом:

, (1.1.6)

где означает суммирование по внутренним состояниям, а - по скоростям.

Выделив энергию основного состояния частицы ε0 , представим первую из сумм (1.1.6) в виде

, (1.1.7)

где Q – “внутренняя” статистическая сумма.

Поскольку энергия ε0 отсчитывается от общего уровня системы, то, очевидно, разность энергии системы электрон – ион до и после ионизации равна энергии ионизации атома, т.е.

. (1.1.8)

Именно эта разность энергий (потенциал ионизации атома) входит в выражение для отношения статистических сумм (1.1.5).

Внутренние статистические суммы атомов и ионов можно определить следующим образом [5, с.102]:

, (1.1.9)

где квантовые числа l и s определяют орбитальный момент количества движения и спин. При kT<Δε1 (что обычно выполнено для низкотемпературной плазмы(НТП)) члены суммы (1.1.9) очень быстро уменьшаются. При расчетах для атомов в этой сумме можно ограничится двумя членами, для ионов – одним. Электроны внутренней структуры не имеют, поэтому их внутренний статистический вес Q=2, он соответствует двум направлениям спина.

Статистическую сумму, связанную с поступательными степенями свободы, определим, основываясь на квазиклассическом приближении квантовой механики [6, с.198]. Размер шестимерной ячейки, соответствующей одному состоянию, находим из соотношения неопределенности

. (1.1.10)

Найдем число состояний, приходившихся на весь фазовый объем системы, отвечающий интервалу скоростей ,во всем объеме плазмы V:

. (1.1.11)

Подставляя (1.1.11) в выражение для статистической суммы , получаем

(1.1.12)

Заменяя суммирование по скоростям интегрированием, находим

(1.1.13)

Используя полученное выражение для частиц всех сортов, участвующих в реакции (1.1.1), и учитывая (1.1.8), преобразуем (1.1.5) к виду

(1.1.14)

Эта формула, определяющая константу ионизационного равновесия, называется формулой Саха. По аналогии с предыдущим можно получить цепочку уравнений Саха для последовательности степеней ионизации атома, т.е. для реакций

,

К-во Просмотров: 222
Бесплатно скачать Курсовая работа: Термодинамическое равновесие гетерогенных плазменных систем с суще