Курсовая работа: Термодинамическое равновесие гетерогенных плазменных систем с суще
, (1.1.2)
где μа, μi , μe -химические потенциалы соответственно атома, иона и электрона, μm входят справа и слева в равенство (1.1.2) и могут быть сокращены.
Пренебрегая взаимодействием между компонентами газовой плазмы, химический потенциал компонента α определим по формуле для идеального газа [1]:
, (1.1.3)
где Sα – статистическая сумма;
; (1.1.4)
- число частиц сорта α в объеме плазмы V.
В (1.1.4) суммирование распространено на все состояния n частиц сорта α; qαn – статистический вес, а множитель exp(-Eαn /kT) определяет относительную вероятность состояния частицы с энергией Eαn (величина Eαn должна отсчитываться от общего уровня энергии группы частиц, участвующих в рассматриваемой реакции).`
Подставляя (1.1.3) в ( 1.1.2), получаем условие равновесия
или
. (1.1.5)
Уточним (1.1.4) для статистических сумм S (для простоты индекс α опускаем). Входящая в (1.1.4) полная энергия Е частиц слагается из энергии внутренних степеней свободы j и энергии поступательного движения К. следовательно, (1.1.4) можно записать следующим образом:
, (1.1.6)
где означает суммирование по внутренним состояниям, а - по скоростям.
Выделив энергию основного состояния частицы ε0 , представим первую из сумм (1.1.6) в виде
, (1.1.7)
где Q – “внутренняя” статистическая сумма.
Поскольку энергия ε0 отсчитывается от общего уровня системы, то, очевидно, разность энергии системы электрон – ион до и после ионизации равна энергии ионизации атома, т.е.
. (1.1.8)
Именно эта разность энергий (потенциал ионизации атома) входит в выражение для отношения статистических сумм (1.1.5).
Внутренние статистические суммы атомов и ионов можно определить следующим образом [5, с.102]:
, (1.1.9)
где квантовые числа l и s определяют орбитальный момент количества движения и спин. При kT<Δε1 (что обычно выполнено для низкотемпературной плазмы(НТП)) члены суммы (1.1.9) очень быстро уменьшаются. При расчетах для атомов в этой сумме можно ограничится двумя членами, для ионов – одним. Электроны внутренней структуры не имеют, поэтому их внутренний статистический вес Q=2, он соответствует двум направлениям спина.
Статистическую сумму, связанную с поступательными степенями свободы, определим, основываясь на квазиклассическом приближении квантовой механики [6, с.198]. Размер шестимерной ячейки, соответствующей одному состоянию, находим из соотношения неопределенности
. (1.1.10)
Найдем число состояний, приходившихся на весь фазовый объем системы, отвечающий интервалу скоростей ,во всем объеме плазмы V:
. (1.1.11)
Подставляя (1.1.11) в выражение для статистической суммы , получаем
(1.1.12)
Заменяя суммирование по скоростям интегрированием, находим
(1.1.13)
Используя полученное выражение для частиц всех сортов, участвующих в реакции (1.1.1), и учитывая (1.1.8), преобразуем (1.1.5) к виду
(1.1.14)
Эта формула, определяющая константу ионизационного равновесия, называется формулой Саха. По аналогии с предыдущим можно получить цепочку уравнений Саха для последовательности степеней ионизации атома, т.е. для реакций
,