Курсовая работа: Трех- и четырехволновое рассеяние света на поляритонах в кристаллах ниобата лития с примесями
бы прямыми .w(k)=wTO и w(k)=wLO , а вторые - прямой w=. Запаздывающее взаимодействие между этими колебаниями в кристалле приводит к поляритонным возбуждениям, имеющим смешанную электромеханическую природу. На частотах, больших wLO находиться верхняя поляритонная ветвь. На частотах между wTO и wLO находится запрещенная зона, где среда не прозрачна для объемных волн.
В анизотропных одноосных кристаллах частотам поперечных и продольных колебаний wТ и wL соответствуют частоты колебаний, смещения которых параллельны (wе Т ; wе L ) и перпендикулярны (wо Т ; wо L ) оптической оси. На рис.2 изображены дисперсионные кривые, соответствующие случаю, когда вектор перпендикулярен главной оптической оси кристалла.
1.2. Интенсивность СПР и симметрия кристалла LiNbO3 .
Впервые вопрос об интенсивности СПР рассматривался в работе [3]. Когда поляритонная частота wp далека от частоты фонона, достаточно рассматривать квадратичную нелинейную восприимчивость c(2) . Будем рассматривать накачку, как плоскую монохроматическую волну с интенсивностью SL и предположим, что углы рассеяния qp,s на частотах wp , ws малы, так что , где А - сечение рассеивающего объёма V, l - длина кристалла. Тогда мощность, рассеиваемая на частоте ws в направлении в единичный спектральный и угловой интервалы, равна[4]:
(3)
где - свертка тензора c(2) и ортов поляризации соответствующих волн, ns,p,L - показатели преломления на соответствующих частотах, а - форм-фактор, описывающий частотно-угловую структуру СПР, когда среда прозрачна на всех трёх частотах. В последнем выражении введено обозначение ,.где - отстройка волнового вектора поляритона от точного синхронизма.
Тензор квадратичной восприимчивости c(2) однородных кристаллов ниобата лития, использовавшихся в данной работе, имеет вид [5]:
, (4)
причём cxxy =-2cyyy , cyxx =-cyyy , cyyz =cxxz , czyy =czxx . Кристаллофизические оси ориентированы относительно элементов симметрии следующим образом: ось Z совпадает с оптической осью кристалла, осью симметрии третьего порядка, ось X перпендикулярна плоскости зеркальной симметрии m, а ось Y лежит в этой плоскости. Геометрии рассеяния, которая была реализована в эксперименте, соответствует схематическая запись X(Z,Y)X+DZ. Здесь последовательность индексов задаёт направления векторов соответственно. Последнее выражение X+DZ определяет плоскость рассеяния, которая, в свою очередь, задается ориентацией входной щели спектрографа (в данном случае плоскость XZ). В соответствии с видом тензора нелинейной поляризуемости (4) константа нелинейного взаимодействия равна:
(5)
Это означает, что регистрировалось излучение, рассеянное на обыкновенных поляритонах.
§2. Рассеяние света на поляритонах в условиях нелинейной дифракции.
Изменение нелинейной восприимчивости в пространстве оказывает воздействие на протекание параметрического процесса в кристалле. Периодическая модуляция нелинейной восприимчивости влияет на условия пространственного синхронизма[6]:
, (6)
где - вектор обратной решётки, связанный со слоями-доменами, d - толщина слоя, - единичный вектор, перпендикулярный слоям, m - целое число. Условия временного синхронизма при этом не меняются. Эффективная нелинейная восприимчивость (5) может быть разложена в виде(ceff (2) ºc):
(7)
Амплитуды пространственных гармоник квадратичной восприимчивости имеют вид:
(8)
Тогда поляризация на частоте рассеянного излучения выглядит следующим образом:
(9)
Отсюда видно, что интенсивность рассеянного излучения в направлении, соответствующем m-ому порядку дифракции, пропорциональна Фурье-амплитуде cm .
Нелинейная дифракция позволяет получить новое уравнение пространственного синхронизма при генерации второй гармоники. В работе [7] исследовали генерацию второй гармоники (ВГ) в слоисто-неоднородном кристалле ниобата бария-натрия. Была прослежена температурная зависимость интенсивности ВГ при нелинейной дифракции света в окрестности сегнетоэлектрического фазового перехода. Выше температуры этого перехода доменов нет, поэтому интенсивность ВГ резко падает, не опускаясь до нуля, так как существует остаточная поляризованность слоёв.
В работе [6] получены спектры нелинейной дифракции в полидоменном кристалле ниобата бария-натрия при параметрическом рассеянии света. При этом вектор нормали слоёв был перпендикулярен вектору накачки . Наблюдалось рассеяние в первом и втором порядке дифракции, смещённого по углу относительно нулевого порядка дифракции. По полученным спектрам определены отклонение направления роста слоёв от оптической оси кристалла и период регулярной доменной структуры .
В работе [8] получены одновременно в одном кристалле вторая и третья гармоники излучения 1,064 мкм. При генерации второй гармоники в уравнение волновых векторов входил волновой вектор нелинейной дифракции первого порядка (m=1), а при генерации третьей гармоники - третьего порядка (m=3). Кристалл состоял из участков с периодическими доменами различной толщины. В каждом процессе участвовала область с доменами, толщина которых удовлетворяла уравнению пространственного синхронизма.
§3. Экспериментальная установка для наблюдения СПР.
Основными элементами экспериментальной установки (рис.3) для получения спектров спонтанного параметрического рассеяния на поляритонах (ПР-спектрограф) являются: аргоновый лазер (1) с длиной волны lL =488 нм, нелинейный кристалл (6), две призмы Глана (поляризатор (5) и анализатор (6)), трёхлинзовая оптическая система (8) для получения углового спектра и спектрограф (10) для получения частотного спектра.
Излучение лазера после направляющих зеркал (2) проходит через диафрагмы (3); служащие для контроля положения накачки. Далее поляризатор (5) выделяет поляризацию накачки, параллельную щели спектрографа. Анализатор (6) пропускает сигнальную волну с поляризацией, перпендикулярной выделенной поляризации накачки. Интерференционный фильтр (9) задерживает оставшееся излучение накачки.
Рис.3. Оптическая схема для наблюдения параметрического рассеяния.