Курсовая работа: Цифровые автоматы

Введение

Глава 1. Представление данных в цифровых автоматах (ЦА)

1.1 Представление чисел в позиционных системах счисления (ПСС)

1.2 Формы представления данных в ЦА

1.3 Выполнение арифметических операций с целыми числами, представленными в машинных кодах

1.4 Выполнение логических операций с целыми числами, представленными в машинных кодах

Глава 2. Методы контроля работы ЦА

2.1. Корректирующая способность кодов

2.2 Метод четности / нечетности. Коды Хеминга

2.3 Контроль по модулю

Глава 3. Построение алгоритма реализации численного метода «быстрой сортировки»

3.1 Математическое описание метода

3.2 Таблица используемых переменных

Список используемых источников

Приложение 1. Блок-схема алгоритма


Введение

В своей курсовой работе я ставлю следующие задачи:

– научиться представлять данные в ЦА;

– изучить методы контроля работы ЦА и научиться строить код Хемминга;

– изучить реализацию алгоритма численного метода «быстрой сортировки» и построить его блок-схему.


Глава 1. Представление данных в цифровых автоматах (ЦА)

1.3 Представление чисел в позиционных системах счисления (ПСС)

Система счисления – это совокупность символов и правил их записи, необходимых для записи чисел.

В позиционной системе счисления вес символа зависит от позиции в которой расположен символ. Например, число 222 – первый символ этого числа имеет вес 200, второй – 20, третий – 2.

Основной характеристикой ПСС является основание. Основание ПСС – это количество символов данной системы счисления, которые используются при составлении чисел. В зависимости от основания ПСС существует четыре основных системы счисления: двоичная, восьмеричная, десятеричная и шестнадцатеричная. Все эти системы счисления используются в ЦА и каждая имеет свои основные функции. Например, числа, записанные в двоичной системе счисления, используются в ЦА для операций производимых процессором: запись, считывание, сложение и т.д.; числа в шестнадцатеричной системе счисления – для адресации ячеек памяти.

Перевод чисел из одной ПСС в другую

При переводе чисел из десятичной системы счисления в систему с основанием P обычно используют следующий алгоритм:

1) если переводится целая часть числа, то она делится на P , после чего запоминается остаток от деления. Полученное частное вновь делится на P , остаток запоминается. Процедура продолжается до тех пор, пока частное не станет равным нулю. Остатки от деления на P выписываются в порядке, обратном их получению;

2) если переводится дробная часть числа, то она умножается на P , после чего целая часть запоминается и отбрасывается. Вновь полученная дробная часть умножается на P и т.д. Процедура продолжается до тех пор, пока дробная часть не станет равной нулю. Целые части выписываются после двоичной запятой в порядке их получения. Результатом может быть либо конечная, либо периодическая двоичная дробь. Поэтому, когда дробь является периодической, приходится обрывать умножение на каком-либо шаге и довольствоваться приближенной записью исходного числа в системе с основанием P .

Перевод числа из системы счисления с основанием P1 в систему счисления с основанием P2 , можно выполнить по такому же алгоритму, но все вычисления нужно проводить в системе счисления с основанием P1 . Второй способ перевести число можно в два этапа: переведя это число в десятеричную систему счисления, а затем из десятеричной в систему счисления с основанием P2 .

Чтобы перевести число из системы счисления с основанием P
в десятичную систему счисления, нужно найти сумму произведений содержимого разряда на вес этого разряда в системе счисления с основанием P . Где разряд – номер позиции в числе, нумеруются справа налево, начиная с нуля; вес разряда – число, равное основанию системы счисления в степени номера разряда.

Чтобы перевести число из двоичной системы счисления
в восьмеричную (шестнадцатеричную) систему счисления, нужно разбить число на тройки (четверки) цифр, в случае необходимости следует дополнить целую и дробную части числа нулями (целую слева, дробную справа). Затем заменить полученные группы цифр соответствующими им восьмеричными (шестнадцатеричными) цифрами. Например, число 11010010.102 нужно перевести в восьмеричную систему счисления. Разобьем число на тройки цифр: 011 010 010. 100 , заменим тройки цифр на соответствующими им восьмеричными цифрами. Получим 11010010.102 = 322.48

Чтобы перевести число из восьмеричной (шестнадцатеричной ) системы счисления в двоичную систему счисления, нужно заменить каждую цифру числа соответствующими им тройками (четверками) двоичных цифр.


Задание. Осуществить перевод числа (А+В), представленного в 10-ой системе из одной системы счисления в другие, по схеме рисунка.

(А+В)10

( )16

( )8

( )2

( )2

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 589
Бесплатно скачать Курсовая работа: Цифровые автоматы