Курсовая работа: Ультразвуковая экстракция полисахаридов льна

Раньше полагали, что для интенсификации технологических процессов необходимы колебания высоких частот (не менее 300-500 кГц). В последнее время успешно применяют акустические колебания как средней (от долей Вт/см до нескольких Вт/см), так и большой (10 Вт/см и выше) интенсивности.

Таким образом, современная техника практически использует упругие механические колебания весьма широкого диапазона и интенсивностей.

Сознательное изменение скорости процесса, в частности путем воздействия на него упругих колебаний, требует понимания механизма и кинетики этого процесса. Объектом воздействия должна быть, прежде всего, лимитирующая стадия процесса. Естественно, что для эффективного воздействия на нее необходимо располагать сведениями о зависимости направления и скорости этой стадии от параметров акустического поля. Поэтому, наряду с исследованием влияния ультразвука на разного рода сложные технологические процессы, необходимо глубокое изучение его влияния на «элементарные» явления, составляющие эти процессы.

В настоящее время применение ультразвуковых колебаний в химической технологии развивается в двух основных направлениях:

контроль технологических процессов и качества продукции;

интенсификация производства [1].

1.2 Экстрагирование в системе твердое тело – жидкость

1.2.1 Экстракция. Основные понятия

Экстракцией в широком смысле называют процессы извлечения одного или нескольких компонентов из растворов или твердых тел с помощью избирательных растворителей (экстрагентов) [3].

Экстрагирование в системе твердое тело – жидкость - один из важнейших технологических процессов, нашедших широкое распространение в химической, химико-фармацевтической, пищевой и других отраслях промышленности.

Движущей силой процесса экстракции является разница концентраций экстрагируемого вещества в жидкости, заполняющей поры твердого тела, и в основной массе экстрагента, находящегося в контакте с поверхностью твердых частиц. Механизм экстрагирования в общем случае включает следующие стадии:

проникновение экстрагента в поры твердого материала;

растворение целевых компонентов;

перенос экстрагируемого вещества из глубины твердой частицы к поверхности раздела фаз: в элементарных случаях с помощью молекулярной диффузии, а при осложнении этого механизма другими явлениями (растворением, набуханием) – помощью массопроводности;

перенос вещества от поверхности раздела фаз вглубь экстрагента с помощью конвективной диффузии (массоотдачи) [1].

При экстрагировании в системе твердое тело – жидкость процесс может лимитироваться следующими стадиями:

внешнедифузионной – скорость процесса определяется скоростью диффузии в объеме при условии, что концентрация растворителя в порах и на поверхности твердого материала меньше его концентрации в объеме;

внутридиффузионной – скорость процесса определяется скоростью диффузии в порах вещества;

внутренней кинетической – при условии, что пористый материал обладает относительно низкой химической активностью, а концентрация растворителя в порах равна концентрации в объеме;

внешней кинетической – реагент имеет относительно высокую химическую активность, вследствие чего реакция проходит на поверхности пористого материала при условии, что скорость реакции лимитирует скорость всего процесса (при малой пористости вещества) [4].

Эффективность процесса экстрагирования зависит от большого числа параметров, например, от формы нахождения извлекаемого компонента, характера взаимодействия твердого тела с извлекаемым компонентом, различия в избирательной способности экстрагента по отношению к компонентам, содержащимся в твердой фазе, от структуры пористого материала [5].

1.2.2 Экстрагирование биологически активных веществ из растительного сырья

Главная особенность процесса экстрагирования из пищевого и растительного сырья состоит в том, что физические свойства сырья в значительной степени изменяются в процессе экстрагирования, и это оказывает существенное влияние на все стадии процесса.

Экстрагирование БАВ – главная, но и наиболее продолжительная стадия переработки сырья. Сложность изучения процессов твердофазного экстрагирования обусловлена, во-первых, неопределенностью изменения структуры твердой фазы во время извлечения из нее целевых компонентов, во-вторых, полидисперсностью твердой фазы. Кроме того, возникают определенные трудности при выборе избирательного экстрагента [1].

На большинстве заводов экстрагирование ведется малоэффективными методами, такими как: мацерация, перколяция, выпаривание, настаивание, отваривание [4]. Мацерация представляет собой обычное вымачивание, при котором происходит разрушение клеточных стенок растительного сырья и растворение экстрагируемых веществ. Длительность процесса достигает 14 дней. При перколяции, или просачивании, растворитель просачивается через слой измельченного сырья и «вымывает» целевые компоненты. Основные физические явления, обуславливающие процесс перколяции, - гравитация, вязкость, адгезия, трение, осмос, поверхностные, капиллярные явления и растворение [5].

Но все используемые в данное время методы экстракции довольно неэкономичны, что приводит к их ограниченному применению.

1.2.3 Интенсификация экстракционных процессов под действием ультразвука

Применение различных электрофизических методов (в частности, ультразвука) позволило по-новому построить технологический процесс, значительно ускорить его, повысить выход и улучшить качество продукции. Доказана целесообразность широкого применения ультразвука не только в пищевой и фармацевтической промышленности, но и для воздействия на различные технологические процессы [6].

Большое количество исследований в области ультразвуковой интенсификации различных гомо- и гетерогенных процессов посвящено выделению из смесей, сплавов необходимых веществ, а также очистке вод, почв и воздуха. Так, описаны ультразвуковая экстракция диметионата [7], экстракция антител из клеток [8], экстракция гербицидов из почвы с использованием ультразвука [9], эндоскопическая экстракция жировой массы с помощью ультразвукового скальпеля [10], жидкофазная экстракция полициклических ароматических углеводородов из загрязненных вод с помощью ультразвука [11], экстракция полициклических ароматических углеводородов из лесных почв [12]. Ультразвуком также выделяют из микрооранизмов аминокислоты и белки с сырным вкусом для придания вкусовых качеств различным сырам [13], производят выделение из клеток фермента эндонуклеазы [14], осуществляют твердо-жидкостную ультразвуковую экстракцию селена из биологических образцов [15].

Показано, что ультразвуком из сырья растительного происхождения в диапазоне частот 19 кГц – 1 МГц возможно извлекать практически все известные соединения, продуцируемые растениями. Кинетика ультразвуковой экстракции биологически активных веществ зависит от принадлежности к определенной химической группе, а степень извлечения растет в ряду: масла, алкалоиды, фуранохромы, флавоноиды, сапонины, гликозиды [16]. При использовании ультразвука наблюдается не только значительное ускорение процесса, но и увеличение по сравнению с другими способами экстрагирования выхода продукта [17].

Преимущества ультразвуковой экстракции по сравнению с другими способами:

минимальное применение ручного труда;

сокращение времени технологических процессов.

К-во Просмотров: 331
Бесплатно скачать Курсовая работа: Ультразвуковая экстракция полисахаридов льна