Курсовая работа: Увеличение электрической прочности ускоряющего промежутка электронного источника при наличии пучка
q – элементарный заряд
С учётом вышесказанного получим:
(5.1)
Чтобы найти концентрацию нейтралов и их температуру в пределах цилиндра радиуса R – nb , Tb – необходимо записать уравнения баланса частиц и энергий.
Поток частиц из цилиндра Фout :
(5.2)
Поток частиц в цилиндр Фin :
(5.3)
где Sс = 2pR2 + 2pRd – площадь поверхности цилиндра;
M – масса нейтрала; k – постоянная Больцмана;
nb и n0 – концентрация нейтралов в цилиндре и за его пределами;
Tb и T0 – температуры нейтралов в цилиндре и за его пределами.
Если Фin = Фout , то из формул (5.2–5.3) получим:
(5.4)
Энергия, выносимая из цилиндра Wout :
(5.5)
Энергия, вносимая в цилиндр Win :
, (5.6)
где E находится по формуле (5.1)
Если Win = Wout , то, подставив в формулу (5.5) выражение (5.4), получим:
, (5.7)
где (5.8)
Так как (P – давление газа за пределами цилиндра), то получим:
, или
если Pвыражено в Торр. (5.9)
Таким образом, при увеличении энергии ионов имеет место снижение концентрации нейтралов. В свою очередь, энергия ионов увеличивается за счёт роста тока пучка. Результаты модели в полной мере соответствуют зависимостям, полученным экспериментальным путем. Локальный нагрев газа электронным пучком ведёт к увеличению электрической прочности ускоряющего промежутка плазменного источника электронов в присутствии пучка в ускоряющем промежутке, в форвакуумном диапазоне давлений.
6. РАСЧЁТ И ОБРАБОТКА РЕЗУЛЬТАТОВ
Исходные данные
P = 60 ¸ 160 мТорр (давление газа вне пучка)