Курсовая работа: Верхний центральный показатель некоторой линейной системы

,

где - константа, общая для всех и , но, вообще говоря, зависящая от выбора R и >0.

Определение 2 [1, с.103]: совокупность всех верхних функций называется верхним классом семейства P (обозначим через N=N (P)).

Определение 3 [1, с.534 ]: число

называется верхним средним значением функции p (t).

Определение 4 [1, с.103]: число

где - верхнее среднее значение функции R (t), называется верхним центральным числом семейства P. Оно будет обозначаться также .

Докажем следующее утверждение: если семейство состоит из двух функций и при этом , то верхний класс семейства P можно считать состоящим из одной функции , и .

Неравенство означает, что

и для любого существует такая константа , что


Или

(1)

Аналогичное неравенство для функции очевидно

.

Согласно определения 1 является верхней функцией для семейства

.

Докажем равенство

.

Если существует такая верхняя функция , что для всех , то эта функция одна образует верхний класс и [1, с.104].

Найдем такую верхнюю функцию , что .

Рассмотрим интегралы

Разделим последнее неравенство на (t-s), получим

Устремив и вычислив верхний предел при , получим

К-во Просмотров: 177
Бесплатно скачать Курсовая работа: Верхний центральный показатель некоторой линейной системы