Курсовая работа: Верхний центральный показатель некоторой линейной системы
Найдем верхнее центральное число семейства
.
Согласно утверждения, доказанного в пункте1: если семейство состоит из двух функций и при этом , то
.
Проверим, осуществляется ли оценка . (4)
Подставляя в (1), получим
Или
Оценка (4) осуществляется, следовательно, .
Вычислим верхнее среднее значение функции .
По определению 3 имеем
.
Вычисляя интеграл
,
Получим
Так как , то
Таким образом, верхнее центральное число семейства
,
где , равно 0, следовательно, верхний центральный показатель системы (3) также равен 0.
Заключение
Таким образом, мы выяснили, что если семейство состоит из двух функций и при этом , то ; верхний центральный показатель рассмотренной системы совпадает с верхним центральным числом конечного семействаи равен 0.
Список использованной литературы
1. Б.Ф. Былов и др. "Теория показателей Ляпунова" - М.: Наука, 1966 г., 564 с.