Курсовая работа: Верхний центральный показатель некоторой линейной системы

Найдем верхнее центральное число семейства

.

Согласно утверждения, доказанного в пункте1: если семейство состоит из двух функций и при этом , то

.

Проверим, осуществляется ли оценка . (4)

Подставляя в (1), получим

Или

Оценка (4) осуществляется, следовательно, .

Вычислим верхнее среднее значение функции .

По определению 3 имеем

.

Вычисляя интеграл

,

Получим

Так как , то

Таким образом, верхнее центральное число семейства

,


где , равно 0, следовательно, верхний центральный показатель системы (3) также равен 0.

Заключение

Таким образом, мы выяснили, что если семейство состоит из двух функций и при этом , то ; верхний центральный показатель рассмотренной системы совпадает с верхним центральным числом конечного семействаи равен 0.

Список использованной литературы

1. Б.Ф. Былов и др. "Теория показателей Ляпунова" - М.: Наука, 1966 г., 564 с.

К-во Просмотров: 176
Бесплатно скачать Курсовая работа: Верхний центральный показатель некоторой линейной системы