Курсовая работа: Верхний центральный показатель некоторой линейной системы
или
Итак, имеем
Значит, .
Так как - верхняя функция, то .
2. Верхний центральный показатель линейной системы
Пусть дана система
(2)
и - ее решение.
Рассмотрим семейство функций
,,
Определение 5 [1, с.116]: Функция R (t) называется верхней для системы (2), если она ограничена, измерима и осуществляет оценку
,
Где
- норма матрицы Коши линейной системы.
Совокупность всех верхних функций называется верхним классом системы (2), а число
верхним центральным показателем линейной системы.
Диагональная система
имеет матрицу Коши
с нормой
.
Поэтому верхний центральный показатель диагональной системы совпадает с верхним центральным числом конечного семейства P={} [1, с.118].
Найдем верхний центральный показатель следующей системы
(3)
где k=0, 1, 2,….
Верхний центральный показатель системы (3) совпадает с верхним центральным числом конечного семейства