Курсовая работа: Виды теплообмена
к – коэффициент теплопередачи, Вт/(м2. К);
u – удельный объём, м3 /кг;
V – объём, м3 ;
x, y, z
r, j, z координаты в декартовой, цилиндрической и сферической системах, м;
r, j, q
b - термический коэффициент объёмного расширения, 1/К;
e - излучательная способность (степень черноты); r - плотность, кг/м3 .
1. СТАЦИОНАРНАЯ ЗАДАЧА ТЕПЛОПРОВОДНОСТИ
Применим уравнение теплопроводности для решения задач, в которых температура зависит только от одной линейной координаты. Примем, что в прямоугольной системе координат температура будет зависеть только от x, а в цилиндрической и сферической системах координат—только от радиуса. Предполагается, что коэффициент теплопроводности является постоянной величиной, а тепловыделение отсутствует.
Применим общую методику решения, состоящую из двух этапов. На первом этапе из решения соответствующего упрощенного уравнения теплопроводности находится распределение температуры. С этой целью отыскивается аналитическое решение дифференциального уравнения второго порядка. После того как решение дифференциального уравнения записано в общем виде, с помощью двух граничных условий определяются две постоянные интегрирования. На втором этапе с помощью закона Фурье вычисляется кондуктивный тепловой поток через твердое тело.
1.1 Общее понятие термического сопротивления
Математическое выражение закона Гука имеет вид:
или после разделения переменных
,
интегрируя в пределах изменения пространственной координаты и в соответствующем температурном интервале, получаем
или
Выражение
называется среднеинтегральным коэффициентом теплопроводности в интервале . При линейной зависимости
При постоянном:
Таким образом, имеем
Сравнивая полученное уравнение с выражением закона Ома
,
получаем уравнение, определяющее термическое сопротивление теплопроводности в общем случае
(1.0)
Для получения выражения, определяющего термическое сопротивление конвективного теплообмена, рассмотрим закон Ньютона-Рихмана