Курсовая работа: Виды теплообмена
Промежуточные температуры типа ТX можно найти из уравнения (1.6).
Предполагается, что при параллельном соединении термических сопротивлений R2 и R3 тепловой поток остается одномерным; если же сопротивления R2 и R3 заметно отличаются друг от друга, могут стать существенными двумерные эффекты.
1.3 Цилиндрические координаты
Из задач теплопроводности для тел цилиндрической формы чаще всего встречается задача о кондуктивном тепловом потоке через длинный полый цилиндр (рисунок 1.3). Известно, что температура внутренней поверхности цилиндра равна Ti , а температура наружной поверхности То . Стационарное распределение температуры в твердом теле с постоянными теплофизическими свойствами при отсутствии внутреннего тепловыделения определяется решением уравнения теплопроводности при двух граничных условиях: Т(ri )=Ti ; Т(r0 )=Т0 . Решение для местной температуры Т(r) имеет вид
(1.8)
Выражение (1.8) записывается в безразмерной форме следующим образом:
. (1.9)
Следовательно, температура изменяется в радиальном направлении по логарифмическому закону.
Поскольку распределение температуры известно, тепловой поток вдоль радиуса цилиндра можно найти с помощью закона Фурье для цилиндрической системы координат,
(1.10)
где — длина цилиндра.
Дифференцируя распределение температуры (1.8) и подставляя полученный результат в соотношение (1.10), получаем
(1.11)
Выражение (1.11) записано в форме закона Ома, и знаменатель представляет собой термическое сопротивление полого цилиндра:
(1.12)
Используем интегральную форму представленного термического сопротивления. Получаем
Принципы последовательного и параллельного соединения термических сопротивлений в цепь, справедливые для плоской стенки в прямоугольной системе координат, можно применить и для задачи о теплопроводности в полом цилиндре. Предположим, например, что жидкость течет в трубе, покрытой теплоизоляционным материалом (рисунок 1.4). Известно, что средняя температура жидкости равна T1 , а температура внешней поверхности изоляции Т2 . Характеристики материала трубы обозначены индексом 1, а изоляции—индексом 2. Конвективное термическое сопротивление жидкости определяется формулой (1.01). Конвективное термическое сопротивление жидкости нужно соединить последовательно с двумя кондуктивными термическими сопротивлениями для двух твердых материалов, поскольку тепловой поток распространяется последовательно через каждый из этих материалов.
Тепловой поток в этой задаче выражается соотношением:
(1.13)
Термическое сопротивление, входящее в соотношение (1.13), является суммой всех термических сопротивлений между двумя известными температурами. Если известны температуры Т1 и Т2 , то полное сопротивление должно равняться сумме только кондуктивных сопротивлений трубы и изоляции. Температура Тx при известном тепловом потоке находится из соотношения
(1.14)
1.4 Сферические координаты
Распределение температуры и тепловой поток для полого шара определяются таким же образом, как для полого цилиндра и плоской стенки. Стационарное одномерное распределение температуры при отсутствии внутреннего тепловыделения определяется из решения упрощенного уравнения теплопроводности, записанного в сферических координатах. Это уравнение имеет вид
Предполагаем, что граничными условиями являются заданные температуры внутренней и наружной поверхности шара (рисунок 1.5.): Т(ri )=Ti ; Т(r0 )=Т0 . В таком случае распределение температуры в полом шаре определяется соотношением
(1.15)
Следовательно, температура полого шара изменяется в радиальном направлении по гиперболическому закону.
Тепловой поток через стенку шара можно найти, применяя закон Фурье к соотношению (1.15). В итоге получаем
(1.16)
Таким образом, термическое сопротивление стенки шара выражается формулой