Курсовая работа: Вивчення властивостей твердого тіла
Одним з основних результатів квантового підходу дослідження властивостей кристалів є концепція квазічастинок. Квазічастинки перебувають в тому об'ємі, в якому знаходиться система реальних частинок, бути поза системою вони не можуть. Рух кожної окремої квазічастинки ідентичний руху великої кількості реальних частинок системи. Як і справжні частинки, квазічастинки бувають ферміонами і бозонами.
Із (1.2) видно, що енергія збудженого кристала біля основного стану є сумою енергії основного стану і енергії газу квазічастинок. Відповідно енергія збудженого стану системи нормальних коливань кристалічної решітки дорівнює різниці її повної енергії, що виражається сумою (1.2), і енергії основного (незбудженого) стану — енергії нульових коливань
:
З електронами провідності взаємодіють тільки ці збудження, а нульові коливання утворюють постійний незмінний фон (вакуум) кристала. Проте, коли амплітуди нульових коливань атомів стають порівнянними із сталою решітки, то такі квантові кристали набувають деяких дуже цікавих властивостей; такі властивості при певних умовах мають кристали твердого гелію.
Вираз (1.3) можна розглядати, як суму енергій ħω j () певних квазічастинок, кількість яких дорівнює n . Енергія ħω j () називається квантом енергії коливання решітки або фононом. Отже, фонон — це одиничне квантове збудження нормального коливання. За аналогією з фотоном (квантом електромагнітного поля) фонон можна розглядати як вільну квазічастинку. У цьому разі ∆ n = +1 означає народження фонона, а n = –1 — його знищення.
Таким чином, поки теплова енергія кристала досить мала і коливання атомів гармонічні, її можна подати у вигляді суми енергій квазічастинок — фононів , що не взаємодіють. В гармонічному наближенні фонони за багатьма своїми властивостями поводять себе, як ідеальний газ.
Фонони є акустичні і оптичні , а якщо врахувати поляризацію,— поздовжні (L ) і поперечні (Т ), тобто фонони бувають LA , LO , ТА і ТО . Оскільки фонон характеризується хвильовим вектором , то для нього властивий і відповідний закон дисперсії коливань ω (), причому в тривимірному випадку (як і в одновимірному) закон дисперсії є періодичною функцією з періодом решітки. Це означає, що існує певний зв'язок між типом кристала, його симетрією і характером коливань атомів (або симетрією фононів). У вивченні фононного спектра найбільш важливим є вид дисперсії фононів в особливих точках -простору, тобто у високосиметричних точках, наприклад в точках |q| = 0, || = тощо.
Згідно з квантовою статистикою Бозе — Ейнштейна, середнє число фононів, які мають енергію Еф = ħω , задається функцією
(1.4)
Формула (1.4) враховує, що хімічний потенціал рівноважного фононного газу дорівнює нулю, оскільки загальна кількість фононів у кристалі не зберігається.
Відповідно середню енергію фононів, які перебувають у стані з відомими ω і , записують як
¥ ___ ©А - |
(1.5)
1.2 Наближення Ейнштейна і Дебая
В основу першої квантової теорії твердих тіл покладено модель Ейнштейна (1907 p.). Згідно з нею атом кристала являє собою тривимірний гармонічний осцилятор, що виконує коливання з частотою ωЕ поблизу положення рівноваги незалежно від інших атомів. Згідно з цією моделлю, тверде тіло слід розглядати як сукупність 3N квантових осциляторів, що мають однакову частоту. Середня енергія кожного осцилятора визначається за формулою (1.5).
З рис. 1.1 видно, що частоти оптичних коливань кристалічної решітки мало залежать від хвильового вектора . Це означає, що до них можна застосувати модель Ейнштейна. За частоту коливань ωЕ осциляторів беруть ω 3 , яка дорівнює граничному значенню частоти оптичної вітки коливань (рис. 1.1). В моделі твердого тіла Ейнштейна енергію кристала, який містить N атомів, записують так:
(1.6)
У виразі (1.6) введено температуру Ейнштейна
(1.7)
що відповідає збудженню фононів частоти ωf , кількість яких експоненціально зменшується із зниженням температури.
Рис. 1.1
В моделі твердого тіла Ейнштейна вважається, що кожен атом коливається незалежно від інших. Щоб врахувати зв'язок між сусідніми атомами, П. Дебай (1912 р.) розглянув тверде тіло як суцільне пружне середовище. В такій моделі внутрішня енергія твердого тіла пов'язується не з коливаннями окремих атомів, а з стоячими пружними хвилями (модами). Квант коливальної енергії твердого тіла (фонон) переміщується з швидкістю звуку, оскільки власне звукові хвилі пружні. З рис. 1.1 видно, що для всіх значень хвильового числа q ωак < ωоп , Де ωак — частоти акустичних коливань, що відповідають нижній вітці (раніше позначали ω_), а ωоп — частоти оптичних коливань раніше позначали (ω+ ). Енергетично це означає, що при досить низьких температурах у кристалі збуджені одні тільки акустичні коливання. Через велике число атомів спектр цих коливань можна вважати практично неперервним і таким, що змінюється від ω = 0 до ω1 (рис. 1.1).
Якщо ввести характеристичну температуру (температура Дебая)