Курсовая работа: Визуализация численных методов
Метод Эйлера – один из простейших методов численного решения ОДУ. Но существенным его недостатком является большая погрешность вычислений. На рисунке 2 погрешность вычислений дляi-го шага обозначена ε. С каждым шагом погрешность вычислений увеличивается.
1.2 Метод Рунге – Кутта
Пусть дано дифференциальное уравнение первого порядка y`=f(x,y) с начальным условием y(x0)=y0.
Выберем шаг h и введём обозначения:
xi=x0+i*h и yi=y(xi), где i=0,1,2,...,
xi- узлы сетки,
yi- значение интегральной функции в узлах.
Проведём решение в несколько этапов.
Обозначим точки: A(xi,yi), B(xi+1,yi+1), C, D, E.
Через точку А проведём прямую под углом α, где tg α = f(xi,yi).
На прямой (1) найдём точку С. Через точку С проведём прямую под углом α1, где
tg α1 = f(xi+h/4, yi+h/4*f(xi,yi).
Через точку А проведём прямую параллельную последней прямой.
Найдём точку D на прямой (2) и через неё проведём прямую под углом α2, где
tg α2 = f(xi+h/2, yi+h/2*f(xi,yi)).
Через точку А проведём прямую параллельную последней прямой.
По примеру, описанному выше, построим прямую, которая пересечётся с прямой x = xi+1. Эта точка и будет решением дифференциального уравнения при x = xi+1.
Согласно методу Рунге – Кутта четвёртого порядка, последовательные значения yi искомой функции y определяется по формуле:
y i+1=yi+Δy,
где
Δy=(k1+2*k2+2*k3+k4)/6, i=0,1,2,...
а числа k1(i),k2(i),k3(i),k4(i) на каждом шаге вычисляются по формулам:
k1=h*f(xi,yi)
k2 =h*f(xi+h/2,yi+k1/2)
k3=h*f(xi+h/2,yi+k2/2)
k4 =h*f(xi+h,yi+k3)
Это явный четырёхэтапный метод четвёртого порядка точности.
2. Блок-схемы