Курсовая работа: Визуализация численных методов
py = (6705 / (max1 - min1))
u1 = (l(i) - x0) * px + 600
u2 = 7440 - (YE(i) - min1) * py
u3 = (l(i + 1) - x0) * px + 600
u4 = 7440 - (YE(i + 1) - min1) * py
Picture1.Line (u1, u2)-(u3, u4)
u5 = (l(i) - x0) * px + 600
u6 = 7440 - (YR(i) - min1) * py
u7 = (l(i + 1) - x0) * px + 600
u8 = 7440 - (YR(i + 1) - min1) * py
Picture1.Line (u5, u6)-(u7, u8)
u9 = (l(i) - x0) * px + 600
u10 = 7440 - (YT(i) - min1) * py
u11 = (l(i + 1) - x0) * px + 600
u12 = 7440 - (YT(i + 1) - min1) * py
Picture1.Line (u9, u10)-(u11, u12)
Next i
End Sub
Заключение
В данной курсовой рассматривались два метода решения ОДУ с начальными условиями, то есть задачи Коши: метод Эйлера и метод Рунге – Кутта четвёртого порядка.
Данные полученные этими методами идентичны друг другу, но с точки зрения простоты использования метод Эйлера гораздо проще в описании, чем метод Рунге – Кутта четвертого порядка.
Если посмотреть на графики и значения в точках, то можно убедится в том что методы почти точно определяют значения в у, и графики почти совпадают, имея небольшой угол отклонения.