Курсовая работа: Задачи математического программирования
3.5. элементы правого столбца и нижней строки пересчитываются по тому же принципу, что и элементы в центральной части таблицы.
Симплексная таблица, рассчитанная по алгоритму:
Таблица 2.
-х1 | -х3 | ||
х2 = | 0,067 | 0,3 | 6 |
х4 = | 0,57 | -0,67 | 1,1 |
х5 = | 2,17 | -0,67 | 11 |
f(x) = | -3,27 | 1,3 | 72,6 |
Следующим разрешающим столбцом будет столбец х1, а разрешающей строкой – х4. Далее действуем по тому же алгоритму.
Таблица 3.
-х4 | -х3 | 1 | |
х2 = | -0,1 | 0,24 | 5,87 |
х1 = | 1,75 | -1,17 | 1,03 |
х5 = | -3,8 | 1,88 | 5,8 |
f(x) = | 5,7 | -2,5 | 35,06 |
Следующим разрешающим столбцом будет столбец х5, а разрешающей строкой – х3. Далее действуем по тому же алгоритму.
Таблица 4.
-х4 | -х5 | 1 | |
х2 = | 0,39 | -0,13 | 4,4 |
х1 = | -0,61 | 0,6 | 6,19 |
Х3 = | -2 | 0,53 | 1,3 |
f(x) = | 0,64 | 1,3 | 36,08 |
Конечная симплексная таблица:
Все коэффициенты в строке целевой функции положительны, т.е. мы нашли оптимальное решение.
Таким образом, в точке x1 = 4, x2 = 6, x3 = 1,3, x4 = 0, x5 = 0 целевая функция принимает максимальное значение f(x) = 36.
При этом переменным, которые стоят в верхней строке, в базисном решении присваивается значение 0 – это свободные переменные. Каждая из переменных, стоящая в левом столбце, приравнивается к числу, записанному в правом столбце той же самой строки – это базисные переменные.
Постановка двойственной задачи ЛП. Определить значение двойственных оценок можно следующим образом. если некоторый i-тый ресурс используется не полностью, т.е. имеется резерв, значит дополнительная переменная в ограничении для данного ресурса будет больше нуля. Очевидно, что при увеличении общего машинного времени не произошло бы увеличение целевой функции. Следовательно, машинное время не влияет на прибыль и для третьего ограничения двойственная переменная y3 = 0. Таким образом, если по данному ресурсу есть резерв, то дополнительная переменная будет больше нуля, а двойственная оценка данного ограничения равна нулю.
В данном примере оба вида сырья использовались полностью, поэтому их дополнительные переменные равны нулю (в итоговой симплексной таблице переменные х3 и х4 являются свободными, значит х3 = х4 = 0). Если ресурс использовался полностью, то его увеличение или уменьшение повлияет на объем выпускаемой продукции и, следовательно, на величину целевой функции. Значение двойственной оценки при этом находится в симплекс-таблице на пересечении строки целевой функции со столбцом данной дополнительной переменной.
Получить решение двойственной задачи из полученной ранее симплексной таблицы и произвести анализ полученных результатов. Формулировка и результаты решения исходной и двойственной задач распределения ресурсов приведены в таблице 4.
Таблица 4.
Исходная задача ЛП | Двойственная задача ЛП | |||||||||||||||||||
Математическая постановка | ||||||||||||||||||||
Обозначения и интерпретация параметров задачи | ||||||||||||||||||||
xj, j = - количество производимой продукции j-го вида; f(x) – общая прибыль от реализации продукции |
yi, i = - стоимость единицы i-го ресурса; - стоимость всех имеющихся ресурсов | |||||||||||||||||||
Экономическая интерпретаци язадачи | ||||||||||||||||||||
Сколько и какой продукции необходимо произвести, чтобы пр заданных стоимостях cj, j = еддиницы продукции и размерах имеющихся ресурсов bi, i = максимизировать общую прибыль? | Какова должна быть цена единицы каждого из ресурсов, чтобы при заданных их количествах bi, i = и величинах стоимости единицы продукции cj, j = минимизировать общую стоимость затрат? | |||||||||||||||||||
Результаты решения | ||||||||||||||||||||
Результирующая симплекс-таблица
Основные переменные х1 = 6,19 х2 = 4,4 дополнительные переменные х3 = 1,3 х4 = 0 х5 = 0 |
К-во Просмотров: 634
Бесплатно скачать Курсовая работа: Задачи математического программирования
|