Лабораторная работа: Автоматизированный априорный анализ статистической совокупности в среде MS Excel

99,7% значений располагаются в диапазоне ().

Если полученная в табл. 9 структура рассеяния х i по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.

Расхождение с правилом «трех сигм» может быть существенным . Например, менее 60% значений х i попадают в центральный диапазон () или значительно более 5% значения х i выходит за диапазон (). В этих случаях распределение нельзя считать близким к нормальному.

Вывод :

Сравнение данных графы 5 табл.9 с правилом «трех сигм» показывает на их незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно (нельзя) считать близким к нормальному.

Сравнение данных графы 6 табл.9 с правилом «трех сигм» показывает на незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно (нельзя) считать близким к нормальному.

Задача 4

Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков .

Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации V s признаков.

Вывод:

Так как V для первого признака больше (меньше), чем V для второго признака, то колеблемость значений первого признака больше (меньше) колеблемости значений второго признака, совокупность более однородна по первому (второму) признаку, среднее значение первого признака является более (менее) надежным, чем у второго признака.

Задача 5

Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.

Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов » к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( ).

1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.

Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.

2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения (, Mo , Me ) и вариации (). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.

Нормальное распределение является симметричным , и для него выполняются соотношения:

=Mo=Me

Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.

3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хmin и хmax ) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне (). Следовательно, по проценту выхода значений признака за пределы диапазона ( ) можно судить о соответствии длины «хвостов» распределения нормальному закону .

Вывод:

1. Гистограмма является одновершинной (многовершинной).

2. Распределение приблизительно симметрично (существенно асимметрично), так как параметры , Mo, Me отличаются незначительно (значительно):

= 4470,00, Mo=4630,00, Me=4518,00.

3. “Хвосты” распределения не очень длинны (являются длинными), т.к. согласно графе 5 табл.9 6,67% вариантов лежат за пределами интервала ( )=(2948,02; 5991,98) млн. руб.

Следовательно, на основании п.п. 1,2,3, можно (нельзя) сделать заключение о близости изучаемого распределения к нормальному.

II . Статистический анализ генеральной совокупности

К-во Просмотров: 454
Бесплатно скачать Лабораторная работа: Автоматизированный априорный анализ статистической совокупности в среде MS Excel