Лабораторная работа: Будування математичної моделі економічної задачі і розвязання її за допомогою графічного метода
2
A2
2
2
0
1
-0,33333
0,66667
Dk
7
0
0
1,33333
0,33333
Таким чином, на даному кроцi симплекс-метода всi значення Di ≥ 0, отже ми отримали таке рішення задачі: Х = (1; 2; 0; 0;) з цільовою функцією
Zmax = 3*1 + 2*2 = 7.
Безпосередня підстановка цього рішення у вихідну систему підтверджує його правильність:
2*1 + 2 + 0 = 4,
1 + 2*2 + 0 = 5.
Між іншим, в таблиці 3 маємо також розв'язок спряженої задачі (див. далі).
2. В матрично-векторному вигляді взаємно двоїсті (пряма і спряжена) задачі лінійного програмування записуються у вигляді (5), (6):
Z = СХ Þ min (max) при АХ ≤ В, Х ≥ 0; (5)
Z' = BY Þ max (min) при АT Y ≥ C, Y ≥ 0. (6)
Враховуючи, що цільова функція Z нашої прямої задачі дослужується на максимум i всі обмеження записані у вигляді нерівностей типу ≤, двоїста спряжена задача, згідно з правилами лінійного програмування, матиме такий вигляд:
Z' = 4у1 + 5у2 → min
2у1 + у2 ≥ 3,
у1 + 2у2 ≥ 2, (5)
у1 ≥ 0, у2 ≥ 0.
В даному випадку вихідної системи (1) коефіцієнтами цільової функції Z' стають праві частини В обмежень типу ≤ ; якщо якесь обмеження мало б знак типу ≥, ми б просто змінили знаки коефіцієнтів обох частин цього обмеження. Правими частинами обмежень спряженої задачі стають коефіцієнти C цільової функції Z прямої задачі, що максимізується. Нарешті, коефіцієнтами обмежень типу ≥ спряженої задачі стають елементи векторів Аk , k = 1 ÷ m. Змінні Y = {уj } спряженої задачі також повинні бути невід'ємними. Система обмежень спряженої задачі має розмірність n × m, на відміну від m × n у прямій задачі.