Лабораторная работа: Будування математичної моделі економічної задачі і розвязання її за допомогою графічного метода

2

A2

2

2

0

1

-0,33333

0,66667

Dk

7

0

0

1,33333

0,33333

Таким чином, на даному кроцi симплекс-метода всi значення Di ≥ 0, отже ми отримали таке рішення задачі: Х = (1; 2; 0; 0;) з цільовою функцією

Zmax = 3*1 + 2*2 = 7.

Безпосередня підстановка цього рішення у вихідну систему підтверджує його правильність:

2*1 + 2 + 0 = 4,

1 + 2*2 + 0 = 5.

Між іншим, в таблиці 3 маємо також розв'язок спряженої задачі (див. далі).

2. В матрично-векторному вигляді взаємно двоїсті (пряма і спряжена) задачі лінійного програмування записуються у вигляді (5), (6):

Z = СХ Þ min (max) при АХ ≤ В, Х ≥ 0; (5)

Z' = BY Þ max (min) при АT Y ≥ C, Y ≥ 0. (6)

Враховуючи, що цільова функція Z нашої прямої задачі дослужується на максимум i всі обмеження записані у вигляді нерівностей типу ≤, двоїста спряжена задача, згідно з правилами лінійного програмування, матиме такий вигляд:

Z' = 4у1 + 5у2 → min

1 + у2 ≥ 3,

у1 + 2у2 ≥ 2, (5)

у1 ≥ 0, у2 ≥ 0.

В даному випадку вихідної системи (1) коефіцієнтами цільової функції Z' стають праві частини В обмежень типу ≤ ; якщо якесь обмеження мало б знак типу ≥, ми б просто змінили знаки коефіцієнтів обох частин цього обмеження. Правими частинами обмежень спряженої задачі стають коефіцієнти C цільової функції Z прямої задачі, що максимізується. Нарешті, коефіцієнтами обмежень типу ≥ спряженої задачі стають елементи векторів Аk , k = 1 ÷ m. Змінні Y = {уj } спряженої задачі також повинні бути невід'ємними. Система обмежень спряженої задачі має розмірність n × m, на відміну від m × n у прямій задачі.

К-во Просмотров: 428
Бесплатно скачать Лабораторная работа: Будування математичної моделі економічної задачі і розвязання її за допомогою графічного метода