Лабораторная работа: Будування математичної моделі економічної задачі і розвязання її за допомогою графічного метода

Х = { хі }, і = 1 ÷ n = 5,

С = (5, 3, 0, 0, 0),

1 2 1 0 0

А = 2 5 0 1 0

2,236068 3 0 0 1

В = (50, 75, 50).

Як бачимо, вихідна задача максимізації цільової функції Z в нормальній формі (1) набула канонічного вигляду (2) за рахунок перетворення обмежень-нерівностей на обмеження-рівності шляхом введення балансових змінних.

Завдання 2

Розв'язати задачу лінійного програмування, сформульовану в Завданні 1, графічним методом:

Z = 3x1 + 2x2 → max

1 + х2 ≤ 4,

х1 + 2х2 ≤ 5, (1)

х1 ≥ 0, х2 ≥ 0.

Розв'язок

Використовуючи крайні значення знаків ≤ обмежень несуворих нерівностей, тобто знаки =, побудуємо такі три графіки:

1) х1 = - x2 /2 + 2,

2) х1 = -2x2 + 5,

3) x1 = Z - 2x2 /3

Ці графіки показані на рис. 1, на якому многокутник розв’язків, як видно, обмежений знизу (оскільки в системі обмежень (1) фігурують знаки ≤) тільки додатною чвертю декартової системи х1,2 ≥ 0.

На цьому рисунку цільова функція показана штриховою лiнiєю, яка, залежно від величини Z, може переміщуватися паралельно сама собі. Стрілкою з буквою n на рис. 1 позначений напрямок градієнта цільової функції (тобто напрямок збільшення Z). Зрозуміло, що її максимум знаходиться в точці перетину ліній обмежень 1) і 2), в якій х1 = 1 > 0, х2 = 2 > 0. Це й є графічний розв'язок задачі. При цьому цільова функція буде мати таке значення:

Z = 3*1 + 2*2 = 7.


Рисунок 1. Графік до розв’язання Завдання 2

Завдання 3

Розв'язати систему лінійних рівнянь методом повного виключення змінних (метод Гаусса) з використанням розрахункових таблиць:

1 + х2 - х3 - х4 = 2

1 + х3 - 7х4 = 3

1 - 3х2 + х4 = 1

Розв'язок

Взагалі кажучи, ця недовизначена система може або мати безліч розв'язків, або не мати жодного (тобто бути несумісною ). Для з'ясування цього застосуємо метод Гаусса (точніше, Жордана-Гаусса), який реалізуємо у вигляді таблиць 2 – 4. В таблиці 1 вміщені вихідні дані.

Таблиця 1. Вихідна матриця системи

А1

К-во Просмотров: 422
Бесплатно скачать Лабораторная работа: Будування математичної моделі економічної задачі і розвязання її за допомогою графічного метода