Лабораторная работа: Изучение тонких линз и сферических зеркал

Лабораторная работа

Изучение тонких линз и сферических зеркал


Введение

Цель работы: изучение методов определения фокусных расстояний линз и зеркал; наблюдение и оценка их аберраций

Широкое применение линз и сферических зеркал объясняется их свойством, при определенных условиях, превращать расходящиеся гомоцентрические пучки лучей в гомоцентрические сходящиеся пучки, т.е. давать изображения предмета, подобные объекту. Собирающие (рассеивающие) свойства линз и зеркал количественно описываются формулой зеркала и формулой линзы, которые легко получить из формулы преломляющей поверхности (1):

(1)

Здесь а1 – расстояние от источника света L до вершины S сферической поверхности радиусом R, разделяющей две среды с показателями преломления n1 и n2 (рис.1), а2 – расстояние от вершины до изображения источника света L¢.

n1 A n2

i

r

L S j C L¢

a1 a2

R

Рис.1

Видно, что положение изображения L¢, т.е. а2 – однозначно определяется через а1 , n1 , n2 , R, т.е. точка изображается точкой. При выводе этой формулы принято следующее правило знаков: все расстояния отсчитываются от вершины поверхности S и считаются положительными по ходу луча. Если источник L расположен далеко от поверхности, т.е. а1 = ¥, лучи падают на сферическую поверхность параллельным пучкам, то

т.е. бесконечно удаленная точка изображается на постоянном расстоянии f2 . Эта точка F2 называется задним фокусом преломляющей поверхности.

Если а2 = ¥,

то

F1 - передний фокус, т.е. если светящаяся точка находится в переднем фокусе (слева на расстоянии f1 от вершины), то сопряженная ей точка – на бесконечности.

Формула сферического зеркала. Закон преломления легко превратить в закон отражения, если положить формально n2 = - n1 . В этом случае формула преломляющейся поверхности (1) превращается в формулу сферического зеркала (рис.2).


Y Y

C F Y' F C

Y'

Рис. 2

(2)

Видно, что передний и задний фокусы зеркала совпадают, а фокусное расстояние равно половине радиуса. Если обозначить , то формула сферического зеркала будет иметь вид:

.

Для вогнутого зеркала f > 0, для выпуклого f < 0 (фокус мнимый).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 343
Бесплатно скачать Лабораторная работа: Изучение тонких линз и сферических зеркал