Лабораторная работа: Определение момента инерции твердых тел
Используя выражение (3.7) для и учитывая, что г, г, R = 75*10-3 и g=980,67 см/с2 вычисляется момент инерции блока.
I_ex = 16986 г∙см2
Абсолютная погрешности косвенного определения момента инерции блока I э в ходе эксперимента, по формуле:
∆(I_ex) = 552 г∙см2
Экспериментальное значение момента инерции блока:
I_ex = (16986 ± 552) г∙см2 = (1,7 ± 0,6) × 10 -4 кг∙м2
Используя геометрические параметры блока, с учетом плотности металла, из которого изготовлен блок (латунь, r = 8400 кг/м3 ), рассчитать его момент инерции.
Толщина блока в метрах d= 6∙10-3 м
Объём сплошного диска V_CD= π∙d∙R2
V_CD= 1,06 см3
Масса сплошного диска m_CD= p∙ V_CD
m_CD = 890 г = 0,89 кг
Момент инерции сплошного диска I_CD= 1/2∙ m_CD∙r2 2
I_CD = 25031 г∙см2
Так как оси, проходящие через центры масс вырезанных дисков, не совпадают с осью вращения всего блока, то момент инерции I_can каждого диска находится по теореме Штейнера.
Радиус каждого выреза в метрах r2 = 30∙10-3 м
Объём каждого выреза V_can= π∙d∙ r2 2
V_can= 1.696∙10-5 см3
Масса каждого вырезанного диска m_can= p∙V_can
m_can=142 г = 0,142 кг
Момент инерции каждого вырезанного диска относительно его центра масс:
Ic=1/2∙m_can∙ r2 2 Ic = 639 г∙см2
r1 =40∙10-3 м расстояние от оси вращения блока до центра масс каждого
вырезанного диска в метрах
Момент инерции каждого вырезанного диска относительно оси вращения блока:
I_can=Ic+ m_can∙ r1 2 I_can = 639 г∙см2
Момент инерции цилиндрического отверстияI отв относительно оси, проходящей через центр масс блока, определяем по формуле:
= 2911 г∙см2
Момент инерции блока с тремя вырезами в виде малых дисков
I_an= I_CD-3∙ I_can I_an = 16298 г∙см2