Лабораторная работа: Решение обыкновенных дифференциальных уравнений
Цели работы:
· знать команды, используемые при решении обыкновенных дифференциальных уравнений в системе вычислений Maple;
· уметь применять указанные команды для решения математических задач.
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Решение обыкновенных дифференциальных уравнений.
С помощью команды dsolve ( ) можно получить аналитическое решение дифференциального уравнения, а можно и сформировать процедуру построения численного решения задачи Коши, если система Maple не сможет найти общее решение в аналитическом виде. Наиболее общий синтаксис вызова команды решения дифференциального уравнения следующий:
dsolve (уравнения, неизвестные, [опции]);
Параметром уравнения задается одно дифференциальное уравнение или система дифференциальных уравнений. В последнем случае все уравнения системы должны быть представлены в виде множества (их список через запятую следует заключить в фигурные скобки). Параметр неизвестные определяет неизвестную функцию дифференциального уравнения или неизвестные функции системы дифференциальных уравнений, которые, как и сами уравнения системы, должны быть представлены в виде множества. Необязательный параметр опции, определяемый в виде ключевое_значение = значение, позволяет задать методы и форму представления решения.
Чтобы задать производную искомой функции в дифференциальном уравнении используют команду diff ( ) или оператор D, причем саму неизвестную функцию следует определять с явным указанием независимой переменной, например у(х). Оператор D определяет операцию дифференцирования и имеет следующий синтаксис:
(D@@n) (функция) (переменная);
В этой записи n представляет целое число, определяющее порядок производной, параметр функция – используемый идентификатор функции, а параметр переменная – независимую переменную функции. Например, производная второго порядка функции f (х) с использованием этого оператора задается так:
(D@@ 2) (f) (x);
Ниже представлены несколько примеров задания дифференциальных уравнений и систем дифференциальных уравнений:
> ex1:=diff(y(x),x$3)+k^2*y(x)=0;
> ex2:=(D@@3)(y)(x)+k^2*y(x)=cos(k1*x);
> sys1:={D(y1)(x)=a[1,1]*y1(x)+a[1,2]*y2(x),
D(y2)(x)=a[2,1]*y1(x)+a[2,2]*y2(x)};
Заметим, что в приведенных примерах и уравнения, и система уравнений сохраняются в переменных Maple. Как отмечалось ранее, это достаточно распространенный прием, позволяющий использовать в дальнейшем заданные уравнения простой ссылкой на обычную переменную.
Решим одно из известных уравнений:
> ex3:=diff(y(x),x$2)+k^2*y(x)=0;
> dsolve(ex3,y(x));
Найдено общее решение дифференциального уравнения, в котором переменные С1 и С2 – это сгенерированные Maple специальные переменные, представляющие произвольные константы общего решения дифференциального уравнения второго порядка. Этот пример показывает, что при отсутствии каких-либо опций система Maple пытается найти точное общее решение в явном виде. Если в явном виде решения не существует, то система попытается найти его в неявном виде, как видно из следующего примера:
> ex4:=diff(y(x),x)=-sqrt(x^2-y(x))+2*x;
> dsolve(ex4,y(x));
--> ЧИТАТЬ ПОЛНОСТЬЮ <--