Научная работа: Особливості методики розв’язування фізичних задач у 7–8 класах 12–річної школи

Fаf

Користуючись формулою тонкої лінзи під час розв’язування задач, треба мати на увазі: відстань від зображення до лінзи слід брати зі знаком мінус, якщо зображення уявне, і зі знаком плюс, якщо зображення є дійсним; фокусну відстань збиральної лінзи беремо зі знаком « +», а розсіювальної – зі знаком «- «


Розв’язування об’єктивних зв’язків

Розв’язування вправ та задач

1. Предмет розташований на відстані 15 см від розсіювальної лінзи, з фокусною відстанню 30 см. На якій відстані від лінзи виникає зображення цього предмета? (0,1м)

2. На якій відстані від збиральної лінзи з фокусною відстанню 20 см виникає зображення предмета, якщо сам предмет розташований на відстані 15 см? (0,6 м)

3. На малюнку показано головну оптичну вісь тонкої лінзи, світну точку А та її зображення В. Здійсніть побудовою положення оптичного центру лінзи та її фокусів. Визначте тип лінзи (збиральна чи розсіювальна) і тип зображення (дійсне чи уявне)

А

М N

B

4. На малюнку показано головну оптичну вісь лінзи і хід одного з променів. Здійсніть побудовою положення фокусів лінзи

М


5. На малюнку показано хід променя 1 крізь збиральну лінзу. Побудуйте подальший хід променя 2

Використання алгоритмів не є чимось іншим новим і про їх застосування багато відомо, але цей процес має фрагментальний характер. Так, часто можна зустріти загальний алгоритм розв’язування задач з фізики: прочитати умови задачі, з’ясувати, про яке явище йдеться, записати вихідну формулу, що виражає закономірність перебігу цього явища, вивести кінцеву формулу, підставити числові значення, виконати перевірку на розмірність, записати відповідь або конкретний алгоритм, що вказує, як розв’язувати задачу з тієї чи іншої теми курсу фізики.

Така громісткість алгоритмів та широкий діапазон їх застосування затрюднює їх використання учнями середньої школи. Тому, на думку більшості вчителів, можна вважати, що ефективне застосування алгоритмічного підходу до розв’язування задач пов’язане з тим, що алгоритми треба застосовувати системно (див схему), враховуючи їх властивості: визначеність, масовість та результативність дії.

Елементарний Тематичний Методологічний

Конкретний

Спочатку (7 клас) пропонуємо елементарний алгоритм

Наприклад, для такої задачі:»Яку площу основи має діжка заввишки 1 м, містить 160 кг бензину? Густина бензину 800кг \ м « ми пропонуємо:

- прочитати умови задачі,

- з’ясувати явище, про яке йдеться

- записати вихідну формулу, що описує це явище,

- вивести кінцеву формулу;

- підставити числові значення і виконати математичні розрахунки

- Записати відповідь

При подальшому вивченні фізики деякі положення цього алгоритму розширюються, конкретизуються. Наприклад, у другому пункті можна додати – « зробити малюнок, зазначивши сили, що діють на тіло», у п’ятому пункті – « перевірити відповідь за розмірністю «. Такий алгоритм легко заповнювати і застосовувати семикласникам, бо має невелику кількість кроків.

Процес розв’язування задачі з фізики пов'язаний з пошуком відповідних закономірностей (законів), що лежать в основі явищ, про які йдеться в задачі, тому наступним етапом перетворення алгоритму є його трансформація в тематичний . Тематичний тип передбачає конкретні дїї. Перетворення елементарного алгоритму у тематичний з конкретним змістом дає змогу учню мати чітке уявлення про методи розв’язування задач з тієї чи іншої теми.

Так, під час вивчення теплових явищ у 8 класі, розглядаючи задачі на рівняння теплового балансу, використовують такий алгоритм

1 З’ясувати, які тіла беруть участь у теплообміні

2. Визначити, які тіла віддають теплоту, а які – приймають

К-во Просмотров: 314
Бесплатно скачать Научная работа: Особливості методики розв’язування фізичних задач у 7–8 класах 12–річної школи