Научная работа: Получение и изучение сульфатов микрокристаллической целлюлозы древесины осины
1.2 Получение сульфатов микрокристаллической целлюлозы
Среди структурных модификаций целлюлозы все большое значение приобретает микрокристаллическая целлюлоза (МКЦ). МКЦ обладает структурой и свойствами, отличающими её от традиционных волокнистых или порошковых целлюлоз [43]. При получении МКЦ происходит разрушение аморфных областей природного полисахарида. Благодаря плотной упаковке кристаллические участки целлюлозного волокна менее доступны для деструктирующего агента [44], что делает перспективным её применение в качестве исходного материала для получения сернокислых эфиров целлюлозы. Получающиеся эфиры в отличие от аналогичных эфиров из обычной целлюлозы имеют пониженную среднюю степень полимеризации, но большую однородность по сП [45].
В работе [46] описаны методы получения и свойства сульфатов целлюлозы высоких степеней замещения на основе хлопковой МКЦ. Сульфатирование МКЦ серной кислотой в присутствии н-пропанола и применение аминосульфоновой кислоты привело к продуктам с низкой степенью этерификации, только частично растворимым в воде. При использовании в качестве этерифицирующего агента серной кислоты наблюдались низкие выходы целевого продукта и высокая деструкция целлюлозного материала. Применив сульфатирующую систему С1SO3 Н-пиридин (с образованием промежуточного комплекса 803 -пиридин [47]). При температурах реакции 80-90 °С получили препараты сульфата целлюлозы с высокой степенью замещения. В первый период реакции целлюлоза медленно набухала, а затем сжималась, образуя аморфный скрашенный продукт. Очищенная Na+ -соль сульфата МКЦ представляла собой порошок белого цвета.
В работе [48] рассмотрены методы синтеза, строение и антикоагулянтная активность натриевой соли сульфата МКЦ. Сульфатирование МКЦ было проведено комплексом С1SO3 Н -диметилформамид при различных: условиях.
Полученная натриевая соль сульфата МКЦ нуждалась в диализе и характеризовалась широкими распределениями молекулярных масс. В большинстве продуктов наблюдалась полидисперсность из-за гидролиза главной цепи целлюлозы в кислотной среде. Данные ИК-, ЯМР-спектрометрии и элементного анализа показали, что сульфатирование произошло преимущественно при С6 , частично при С2 и ничтожно мало при C3 . Исследования антикоагулянтной активности показали перспективность разработки новых препаратов на основе натриевой соли сульфата МКЦ.
1.3 Свойства сульфатов целлюлозы
Растворимость сульфатов целлюлозы в воде и водных растворах NaOH зависит как от степени замещения и степени полимеризации, так и от равномерности распределения заместителей.
Полученные в работе [49] препараты сульфата целлюлозы в Н-форме растворялись в воде при γ > 50: при значении γ = 35 - 40 в воде полностью растворяется калиевая соль сульфата целлюлозы.
При повышении равномерности распределения заместителей путем предварительной активации целлюлозы кипящим пропанолом [20] или этилендиамином [18] были получены препараты сульфата целлюлозы, полностью растворимые в 6%-ном растворе NaOH при замораживании и при комнатной температуре [18, 50].
Водорастворимые препараты Na-соли сульфата целлюлозыв разбавленных водных растворах являются типичными полиэлектролитами. Согласно [21], по способности сольватироваться водой соли сульфата, целлюлозы могут быть расположены в ряд: Na-соль > К-соль > Ва-соль. Соли сульфата целлюлозы с большинством поливалентных металлов (Mg, Сu, Zn) растворимы в воде.
Согласно данным, полученным рядом авторов [21, 36, 14], сульфаты целлюлозы сравнительно устойчивы к щелочному гидролизу и более легко омыляются в кислой среде. Омыление сульфатных групп происходит с различной скоростью, причем сульфатные группы, этерифицирующие вторичные гидроксильные группы, омыляются значительно быстрее, чем: первичные [21].
Вывод о различной устойчивости сульфатных групп к действию омыляющих реагентов подтверждается и полученными ранее данными Вейцман [36], которая показала, что при выдерживании трисульфата целлюлозы во влажной атмосфере в течение нескольких дней при 20°С (или 2-4 ч при 45°С) отщепляется часть связанной серной кислоты и получается продукт с γ = 150. Остальная связанная серная кислота не отщепляется при нагревании этого эфира целлюлозы в воде в течение 17-24 ч при 60°С и даже при обработке водным раствором щелочи при повышенной температуре под давлением.
Сульфаты целлюлозы в Н-форме, в отличие от солей сульфата целлюлозы, неустойчивы к действию повышенных температур и при нагревании свыше 100°С происходит их постепенное разложение и обугливание.
В последнее время была показана возможность использования сульфатов целлюлозы для формования растворимого в щелочи сульфатцеллюлозного волокна.
1.4 Практическое использование сульфатов целлюлозы
Потенциальная область применения сульфатов целлюлозы очень обширна. В основном это те же отрасли промышленности, в которых используются и другие водорастворимые эфиры целлюлозы [51,52]. Многочисленные сведения об использовании Na-СЦ содержатся в патентной литературе.
Предлагается использовать Na-СЦ для шлихтования и аппретирования ткани с закреплением аппрета: на ткань наносится одновременно Na-СЦ и какой-нибудь реагент типа глиоксаля или формальдегида. Рекомендуется также [53] использовать Na-СЦ в процессе крашения тканей (в состав краски по одному из рецептов входит около 6 % Na-СЦ).
Указывается [51,52,54], что Na-СЦ наряду с КМЦ является очень хорошей добавкой к детергентам, которая препятствует ресорбции грязи на ткань во время стирки.
Использованию Na-СЦ в качестве стабилизатора глинистых суспензий при бурении нефтяных скважин посвящается работа [28]. Авторами показано, что Na-СЦ в этом случае значительно превосходит КМЦ, так как она не осаждается катионом Са в отличие от последней.
Отмечается, что Na-СЦ может быть использована для покрытия бумаг [25] с целью придания ей различных свойств. Для мягкой печати рекомендуется [56] наносить на бумагу водный раствор Na-СЦ и «отвердитель», например глиоксаль, паральдегид. Такая обработка проводится несколько раз с последующей сушкой и прогревом при 343 К. Na-СЦ является также клеем для бумаги и древесины [51]. Так, был получен клей с умеренной устойчивостью к воде, при приготовлении которого добавляют к воде 1 часть глиоксаля к 10 частей 6%-ного раствора Na-СЦ.
Соли СЦ (Na+ , K+ , NH4 + ) предлагаются для приготовления эмульсий серебра в фотопромышленности. Используется продукт со степенью замещения 50. 2%-ный водный раствор Na-СЦ позволяет эмульгировать в нем до 30 % масла [57]. Таким образом, могут быть получены стойкие суспензии таких веществ, как пигменты в краске.
В работе [58] отмечается, что Na-СЦ при приготовлении, например, диоксида титана, является прекрасным флокулянтом, превосходящим другие поверхностно-активные вещества.
Предлагается также [59] добавлением Na-СЦ стабилизировать эмульсии других эфиров целлюлозы в воде.
Указывается [51], что Na-СЦ является превосходным загустителем латексов, что позволяет повысить качество последних. Для этого достаточно
0,2-0,5% Na-СЦ от массы каучука в латексе.
В косметической и фармацевтической промышленности предлагается использовать Na-СЦ в качестве основы для различных кремов, паст, заменяя желатину, альгинат-Na и др. Рекомендуется также [60] использовать Na-СЦ как среду для различных препаратов, например для BaSО4 .
Имеется очень большое количество указаний на возможность использования Na-СЦ как антикоагулянта крови [37,61-65], но сведения о токсичности его разноречивы [32,62-64,57,66]. При этом некоторые авторы исследовали влияние степени замещения и степени полимеризации на этот эффект [61,65].
В ряде работ используется способность сульфатов целлюлозы давать комплексы с различными биологическими препаратами, ингибировать некоторые биохимические процессы в них и т. д. [66-73].
Глава 2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ