Реферат: Абстрактная теория групп
2. Множество L(H,G)=является группой преобразований множества G.
3. Соответствие: является изоморфизмом групп H и L(H,G).
Доказательство.
1. Надо проверить, что отображение взаимно однозначно для всякого
. Если
, то
по закону сокращения. Значит
инъективно. Если
любой элемент, то
и
так что
к тому же и сюръективно.
2. Обозначим через · операцию композиции в группе Sym(G) взаимно однозначных отображений . Надо проверить, что
и
. Пусть
любой элемент. Имеем:
;
и значит,
.
3. Пусть . Надо проверить, что l взаимно однозначно и сохраняет операцию. По построению l сюръективно. Инъективность вытекает из закона правого сокращения:
. Сохранение операции фактически уже было установлено выше:
.
Следствие.
Любая абстрактная группа изоморфна группе преобразований некоторого множества (Достаточно взять G=H и рассмотреть левые сдвиги).
Для случая конечных групп получается теорема Кэли :
Любая группа из n элементов изоморфна подгруппе группы подстановок степени n.
B) Для каждого определим отображение
(правый сдвиг на элемент h ) формулой
.
Теорема B.
1. .
2. Множество является группой преобразований множества G.
3. Соответствие является изоморфизмом групп H и R(H,G).
Доказательство теоремы B вполне аналогично доказательству теоремы A. Отметим только, что . Именно поэтому в пункте 3 теоремы В появляется не
, а
.
С) Для каждого определим
(сопряжение или трансформация элементом h ) формулой
.
Теорема С.
1. Каждое отображение является изоморфизмом группы G с собой (автоморфизмом группы G).
2. Множество является группой преобразований множества G.
3. Отображение сюръективно и сохраняет операцию.
Доказательство.
1. Поскольку , отображение
взаимно однозначно как композиция двух отображений такого типа. Имеем:
и потому
сохраняет операцию.
2. Надо проверить, что и
. Оба равенства проверяются без труда.
3. Сюръективность отображения имеет место по определению. Сохранение операции уже было проверено в пункте 2.
Замечание об инъективности отображения q.
В общем случае отображение q не является инъективным. Например, если группа H коммутативна, все преобразования будут тождественными и группа
тривиальна. Равенство
означает, что
или
(1) В связи с этим удобно ввести следующее определение: множество
называется централизатором подгруппы
. Легко проверить, что централизатор является подгруппой H. Равенство (1) означает, что
. Отсюда вытекает, что если централизатор подгруппы H в G тривиален, отображение q является изоморфизмом.
7. Смежные классы ; классы сопряженных элементов.
Пусть, как и выше, некоторая подгруппа. Реализуем H как группу L(H,G) левых сдвигов на группе G. Орбита
называется левым смежным классом группы G по подгруппе H. Аналогично, рассматривая правые сдвиги, приходим к правым смежным классам
.Заметим, что
стабилизатор St(g, L(H,G)) (как и St(g, R(H,G)) ) тривиален поскольку состоит из таких элементов
, что hg=g
. Поэтому, если группа H конечна, то все левые и все правые смежные классы состоят из одинакового числа элементов, равного
.
Орбиты группы называются классами сопряженных элементов группы G относительно подгруппы H и обозначаются
Если G=H, говорят просто о классах сопряженных элементов группы G. Классы сопряженных элементов могут состоять из разного числа элементов . Это число равно
, где Z(H,g) подгруппа H , состоящая из всех элементов h перестановочных с g.